Coverage for /builds/debichem-team/python-ase/ase/io/nwchem/nwreader.py: 65.44%
272 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
1import re
2from collections import OrderedDict
4import numpy as np
6from ase import Atoms
7from ase.calculators.singlepoint import (
8 SinglePointDFTCalculator,
9 SinglePointKPoint,
10)
11from ase.units import Bohr, Hartree
13from .parser import _define_pattern
15# Note to the reader of this code: Here and below we use the function
16# _define_pattern from parser.py in this same directory to compile
17# regular expressions. These compiled expressions are stored along with
18# an example string that the expression should match in a list that
19# is used during tests (test/nwchem/nwchem_parser.py) to ensure that
20# the regular expressions are still working correctly.
22# Matches the beginning of a GTO calculation
23_gauss_block = _define_pattern(
24 r'^[\s]+NWChem (?:SCF|DFT) Module\n$',
25 " NWChem SCF Module\n",
26)
29# Matches the beginning of a plane wave calculation
30_pw_block = _define_pattern(
31 r'^[\s]+\*[\s]+NWPW (?:PSPW|BAND|PAW|Band Structure) Calculation'
32 r'[\s]+\*[\s]*\n$',
33 " * NWPW PSPW Calculation *\n",
34)
37# Top-level parser
38def read_nwchem_out(fobj, index=-1):
39 """Splits an NWChem output file into chunks corresponding to
40 individual single point calculations."""
41 lines = fobj.readlines()
43 if index == slice(-1, None, None):
44 for line in lines:
45 if _gauss_block.match(line):
46 return [parse_gto_chunk(''.join(lines))]
47 if _pw_block.match(line):
48 return [parse_pw_chunk(''.join(lines))]
49 raise ValueError('This does not appear to be a valid NWChem '
50 'output file.')
52 # First, find each SCF block
53 group = []
54 atomslist = []
55 header = True
56 lastgroup = []
57 lastparser = None
58 parser = None
59 for line in lines:
60 group.append(line)
61 if _gauss_block.match(line):
62 next_parser = parse_gto_chunk
63 elif _pw_block.match(line):
64 next_parser = parse_pw_chunk
65 else:
66 continue
68 if header:
69 header = False
70 else:
71 atoms = parser(''.join(group))
72 if atoms is None and parser is lastparser:
73 atoms = parser(''.join(lastgroup + group))
74 if atoms is not None:
75 atomslist[-1] = atoms
76 lastgroup += group
77 else:
78 atomslist.append(atoms)
79 lastgroup = group
80 lastparser = parser
81 group = []
82 parser = next_parser
83 if not header:
84 atoms = parser(''.join(group))
85 if atoms is not None:
86 atomslist.append(atoms)
88 return atomslist[index]
91# Matches a geometry block and returns the geometry specification lines
92_geom = _define_pattern(
93 r'\n[ \t]+Geometry \"[ \t\S]+\" -> \"[ \t\S]*\"[ \t]*\n'
94 r'^[ \t-]+\n'
95 r'(?:^[ \t\S]*\n){3}'
96 r'^[ \t]+No\.[ \t]+Tag[ \t]+Charge[ \t]+X[ \t]+Y[ \t]+Z\n'
97 r'^[ \t-]+\n'
98 r'((?:^(?:[ \t]+[\S]+){6}[ \t]*\n)+)',
99 """\
101 Geometry "geometry" -> ""
102 -------------------------
104 Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)
106 No. Tag Charge X Y Z
107 ---- ---------------- ---------- -------------- -------------- --------------
108 1 C 6.0000 0.00000000 0.00000000 0.00000000
109 2 H 1.0000 0.62911800 0.62911800 0.62911800
110 3 H 1.0000 -0.62911800 -0.62911800 0.62911800
111 4 H 1.0000 0.62911800 -0.62911800 -0.62911800
112""", re.M)
114# Unit cell parser
115_cell_block = _define_pattern(r'^[ \t]+Lattice Parameters[ \t]*\n'
116 r'^(?:[ \t\S]*\n){4}'
117 r'((?:^(?:[ \t]+[\S]+){5}\n){3})',
118 """\
119 Lattice Parameters
120 ------------------
122 lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.)
124 a1=< 4.000 0.000 0.000 >
125 a2=< 0.000 5.526 0.000 >
126 a3=< 0.000 0.000 4.596 >
127 a= 4.000 b= 5.526 c= 4.596
128 alpha= 90.000 beta= 90.000 gamma= 90.000
129 omega= 101.6
130""", re.M)
133# Parses the geometry and returns the corresponding Atoms object
134def _parse_geomblock(chunk):
135 geomblocks = _geom.findall(chunk)
136 if not geomblocks:
137 return None
138 geomblock = geomblocks[-1].strip().split('\n')
139 natoms = len(geomblock)
140 symbols = []
141 pos = np.zeros((natoms, 3))
142 for i, line in enumerate(geomblock):
143 line = line.strip().split()
144 symbols.append(line[1])
145 pos[i] = [float(x) for x in line[3:6]]
147 cellblocks = _cell_block.findall(chunk)
148 if cellblocks:
149 cellblock = cellblocks[-1].strip().split('\n')
150 cell = np.zeros((3, 3))
151 for i, line in enumerate(cellblock):
152 line = line.strip().split()
153 cell[i] = [float(x) for x in line[1:4]]
154 else:
155 cell = None
156 return Atoms(symbols, positions=pos, cell=cell)
159# GTO-specific parser stuff
161# Matches gradient block from a GTO calculation
162_gto_grad = _define_pattern(
163 r'^[ \t]+[\S]+[ \t]+ENERGY GRADIENTS[ \t]*[\n]+'
164 r'^[ \t]+atom[ \t]+coordinates[ \t]+gradient[ \t]*\n'
165 r'^(?:[ \t]+x[ \t]+y[ \t]+z){2}[ \t]*\n'
166 r'((?:^(?:[ \t]+[\S]+){8}\n)+)[ \t]*\n',
167 """\
168 UHF ENERGY GRADIENTS
170 atom coordinates gradient
171 x y z x y z
172 1 C 0.293457 -0.293457 0.293457 -0.000083 0.000083 -0.000083
173 2 H 1.125380 1.355351 1.125380 0.000086 0.000089 0.000086
174 3 H -1.355351 -1.125380 1.125380 -0.000089 -0.000086 0.000086
175 4 H 1.125380 -1.125380 -1.355351 0.000086 -0.000086 -0.000089
177""", re.M)
179# Energy parsers for a variety of different GTO calculations
180_e_gto = OrderedDict()
181_e_gto['tce'] = _define_pattern(
182 r'^[\s]+[\S]+[\s]+total energy \/ hartree[\s]+'
183 r'=[\s]+([\S]+)[\s]*\n',
184 " CCD total energy / hartree "
185 "= -75.715332545665888\n", re.M,
186)
187_e_gto['ccsd'] = _define_pattern(
188 r'^[\s]+Total CCSD energy:[\s]+([\S]+)[\s]*\n',
189 " Total CCSD energy: -75.716168566598569\n",
190 re.M,
191)
192_e_gto['tddft'] = _define_pattern(
193 r'^[\s]+Excited state energy =[\s]+([\S]+)[\s]*\n',
194 " Excited state energy = -75.130134499965\n",
195 re.M,
196)
197_e_gto['mp2'] = _define_pattern(
198 r'^[\s]+Total MP2 energy[\s]+([\S]+)[\s]*\n',
199 " Total MP2 energy -75.708800087578\n",
200 re.M,
201)
202_e_gto['mf'] = _define_pattern(
203 r'^[\s]+Total (?:DFT|SCF) energy =[\s]+([\S]+)[\s]*\n',
204 " Total SCF energy = -75.585555997789\n",
205 re.M,
206)
209# GTO parser
210def parse_gto_chunk(chunk):
211 atoms = None
212 forces = None
213 energy = None
214 dipole = None
215 for theory, pattern in _e_gto.items():
216 matches = pattern.findall(chunk)
217 if matches:
218 energy = float(matches[-1].replace('D', 'E')) * Hartree
219 break
221 gradblocks = _gto_grad.findall(chunk)
222 if gradblocks:
223 gradblock = gradblocks[-1].strip().split('\n')
224 natoms = len(gradblock)
225 symbols = []
226 pos = np.zeros((natoms, 3))
227 forces = np.zeros((natoms, 3))
228 for i, line in enumerate(gradblock):
229 line = line.strip().split()
230 symbols.append(line[1])
231 pos[i] = [float(x) for x in line[2:5]]
232 forces[i] = [-float(x) for x in line[5:8]]
233 pos *= Bohr
234 forces *= Hartree / Bohr
235 atoms = Atoms(symbols, positions=pos)
237 dipole, _quadrupole = _get_multipole(chunk)
239 kpts = _get_gto_kpts(chunk)
241 if atoms is None:
242 atoms = _parse_geomblock(chunk)
244 if atoms is None:
245 return None
247 # SinglePointDFTCalculator doesn't support quadrupole moment currently
248 calc = SinglePointDFTCalculator(atoms=atoms,
249 energy=energy,
250 free_energy=energy, # XXX Is this right?
251 forces=forces,
252 dipole=dipole,
253 # quadrupole=quadrupole,
254 )
255 calc.kpts = kpts
256 atoms.calc = calc
257 return atoms
260# Extracts dipole and quadrupole moment for a GTO calculation
261# Note on the regex: Some, but not all, versions of NWChem
262# insert extra spaces in the blank lines. Do not remove the \s*
263# in between \n and \n
264_multipole = _define_pattern(
265 r'^[ \t]+Multipole analysis of the density[ \t\S]*\n'
266 r'^[ \t-]+\n\s*\n^[ \t\S]+\n^[ \t-]+\n'
267 r'((?:(?:(?:[ \t]+[\S]+){7,8}\n)|[ \t]*\n){12})',
268 """\
269 Multipole analysis of the density
270 ---------------------------------
272 L x y z total alpha beta nuclear
273 - - - - ----- ----- ---- -------
274 0 0 0 0 -0.000000 -5.000000 -5.000000 10.000000
276 1 1 0 0 0.000000 0.000000 0.000000 0.000000
277 1 0 1 0 -0.000001 -0.000017 -0.000017 0.000034
278 1 0 0 1 -0.902084 -0.559881 -0.559881 0.217679
280 2 2 0 0 -5.142958 -2.571479 -2.571479 0.000000
281 2 1 1 0 -0.000000 -0.000000 -0.000000 0.000000
282 2 1 0 1 0.000000 0.000000 0.000000 0.000000
283 2 0 2 0 -3.153324 -3.807308 -3.807308 4.461291
284 2 0 1 1 0.000001 -0.000009 -0.000009 0.000020
285 2 0 0 2 -4.384288 -3.296205 -3.296205 2.208122
286""", re.M)
289# Parses the dipole and quadrupole moment from a GTO calculation
290def _get_multipole(chunk):
291 matches = _multipole.findall(chunk)
292 if not matches:
293 return None, None
294 # This pulls the 5th column out of the multipole moments block;
295 # this column contains the actual moments.
296 moments = [float(x.split()[4]) for x in matches[-1].split('\n')
297 if x and not x.isspace()]
298 dipole = np.array(moments[1:4]) * Bohr
299 quadrupole = np.zeros(9)
300 quadrupole[[0, 1, 2, 4, 5, 8]] = [moments[4:]]
301 quadrupole[[3, 6, 7]] = quadrupole[[1, 2, 5]]
302 return dipole, quadrupole.reshape((3, 3)) * Bohr**2
305# MO eigenvalue and occupancy parser for GTO calculations
306_eval_block = _define_pattern(
307 r'^[ \t]+[\S]+ Final (?:Alpha |Beta )?Molecular Orbital Analysis[ \t]*'
308 r'\n^[ \t-]+\n\n'
309 r'(?:^[ \t]+Vector [ \t\S]+\n(?:^[ \t\S]+\n){3}'
310 r'(?:^(?:(?:[ \t]+[\S]+){5}){1,2}[ \t]*\n)+\n)+',
311 """\
312 ROHF Final Molecular Orbital Analysis
313 -------------------------------------
315 Vector 1 Occ=2.000000D+00 E=-2.043101D+01
316 MO Center= 1.1D-20, 1.5D-18, 1.2D-01, r^2= 1.5D-02
317 Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
318 ----- ------------ --------------- ----- ------------ ---------------
319 1 0.983233 1 O s
321 Vector 2 Occ=2.000000D+00 E=-1.324439D+00
322 MO Center= -2.1D-18, -8.6D-17, -7.1D-02, r^2= 5.1D-01
323 Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
324 ----- ------------ --------------- ----- ------------ ---------------
325 6 0.708998 1 O s 1 -0.229426 1 O s
326 2 0.217752 1 O s
327 """, re.M) # noqa: W291
330# Parses the eigenvalues and occupations from a GTO calculation
331def _get_gto_kpts(chunk):
332 eval_blocks = _eval_block.findall(chunk)
333 if not eval_blocks:
334 return []
335 kpts = []
336 kpt = _get_gto_evals(eval_blocks[-1])
337 if kpt.s == 1:
338 kpts.append(_get_gto_evals(eval_blocks[-2]))
339 kpts.append(kpt)
340 return kpts
343# Extracts MO eigenvalue and occupancy for a GTO calculation
344_extract_vector = _define_pattern(
345 r'^[ \t]+Vector[ \t]+([\S])+[ \t]+Occ=([\S]+)[ \t]+E=[ \t]*([\S]+)[ \t]*\n',
346 " Vector 1 Occ=2.000000D+00 E=-2.043101D+01\n", re.M,
347)
350# Extracts the eigenvalues and occupations from a GTO calculation
351def _get_gto_evals(chunk):
352 spin = 1 if re.match(r'[ \t\S]+Beta', chunk) else 0
353 data = []
354 for vector in _extract_vector.finditer(chunk):
355 data.append([float(x.replace('D', 'E')) for x in vector.groups()[1:]])
356 data = np.array(data)
357 occ = data[:, 0]
358 energies = data[:, 1] * Hartree
360 return SinglePointKPoint(1., spin, 0, energies, occ)
363# Plane wave specific parsing stuff
365# Matches the gradient block from a plane wave calculation
366_nwpw_grad = _define_pattern(
367 r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
368 r'^[ \t]+Ion Forces:[ \t]*\n'
369 r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
370 """\
371 ============= Ion Gradients =================
372 Ion Forces:
373 1 O ( -0.000012 0.000027 -0.005199 )
374 2 H ( 0.000047 -0.013082 0.020790 )
375 3 H ( 0.000047 0.012863 0.020786 )
376 C.O.M. ( -0.000000 -0.000000 -0.000000 )
377 ===============================================
378""", re.M)
380# Matches the gradient block from a PAW calculation
381_paw_grad = _define_pattern(
382 r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
383 r'^[ \t]+Ion Positions:[ \t]*\n'
384 r'((?:^(?:[ \t]+[\S]+){7}\n)+)'
385 r'^[ \t]+Ion Forces:[ \t]*\n'
386 r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
387 """\
388 ============= Ion Gradients =================
389 Ion Positions:
390 1 O ( -3.77945 -5.22176 -3.77945 )
391 2 H ( -3.77945 -3.77945 3.77945 )
392 3 H ( -3.77945 3.77945 3.77945 )
393 Ion Forces:
394 1 O ( -0.00001 -0.00000 0.00081 )
395 2 H ( 0.00005 -0.00026 -0.00322 )
396 3 H ( 0.00005 0.00030 -0.00322 )
397 C.O.M. ( -0.00000 -0.00000 -0.00000 )
398 ===============================================
399""", re.M)
401# Energy parser for plane wave calculations
402_nwpw_energy = _define_pattern(
403 r'^[\s]+Total (?:PSPW|BAND|PAW) energy'
404 r'[\s]+:[\s]+([\S]+)[\s]*\n',
405 " Total PSPW energy : -0.1709317826E+02\n",
406 re.M,
407)
409# Parser for the fermi energy in a plane wave calculation
410_fermi_energy = _define_pattern(
411 r'^[ \t]+Fermi energy =[ \t]+([\S]+) \([ \t]+[\S]+[ \t]*\n',
412 " Fermi energy = -0.5585062E-01 ( -1.520eV)\n", re.M,
413)
416# Plane wave parser
417def parse_pw_chunk(chunk):
418 atoms = _parse_geomblock(chunk)
419 if atoms is None:
420 return None
422 energy = None
423 efermi = None
424 forces = None
425 stress = None
427 matches = _nwpw_energy.findall(chunk)
428 if matches:
429 energy = float(matches[-1].replace('D', 'E')) * Hartree
431 matches = _fermi_energy.findall(chunk)
432 if matches:
433 efermi = float(matches[-1].replace('D', 'E')) * Hartree
435 gradblocks = _nwpw_grad.findall(chunk)
436 if not gradblocks:
437 gradblocks = _paw_grad.findall(chunk)
438 if gradblocks:
439 gradblock = gradblocks[-1].strip().split('\n')
440 natoms = len(gradblock)
441 symbols = []
442 forces = np.zeros((natoms, 3))
443 for i, line in enumerate(gradblock):
444 line = line.strip().split()
445 symbols.append(line[1])
446 forces[i] = [float(x) for x in line[3:6]]
447 forces *= Hartree / Bohr
449 if atoms.cell:
450 stress = _get_stress(chunk, atoms.cell)
452 ibz_kpts, kpts = _get_pw_kpts(chunk)
454 # NWChem does not calculate an energy extrapolated to the 0K limit,
455 # so right now, energy and free_energy will be the same.
456 calc = SinglePointDFTCalculator(atoms=atoms,
457 energy=energy,
458 efermi=efermi,
459 free_energy=energy,
460 forces=forces,
461 stress=stress,
462 ibzkpts=ibz_kpts)
463 calc.kpts = kpts
464 atoms.calc = calc
465 return atoms
468# Extracts stress tensor from a plane wave calculation
469_stress = _define_pattern(
470 r'[ \t]+[=]+[ \t]+(?:total gradient|E all FD)[ \t]+[=]+[ \t]*\n'
471 r'^[ \t]+S =((?:(?:[ \t]+[\S]+){5}\n){3})[ \t=]+\n',
472 """\
473 ============= total gradient ==============
474 S = ( -0.22668 0.27174 0.19134 )
475 ( 0.23150 -0.26760 0.23226 )
476 ( 0.19090 0.27206 -0.22700 )
477 ===================================================
478""", re.M)
481# Extract stress tensor from a plane wave calculation
482def _get_stress(chunk, cell):
483 stress_blocks = _stress.findall(chunk)
484 if not stress_blocks:
485 return None
486 stress_block = stress_blocks[-1]
487 stress = np.zeros((3, 3))
488 for i, row in enumerate(stress_block.strip().split('\n')):
489 stress[i] = [float(x) for x in row.split()[1:4]]
490 stress = (stress @ cell) * Hartree / Bohr / cell.volume
491 stress = 0.5 * (stress + stress.T)
492 # convert from 3x3 array to Voigt form
493 return stress.ravel()[[0, 4, 8, 5, 2, 1]]
496# MO/band eigenvalue and occupancy parser for plane wave calculations
497_nwpw_eval_block = _define_pattern(
498 r'(?:(?:^[ \t]+Brillouin zone point:[ \t]+[\S]+[ \t]*\n'
499 r'(?:[ \t\S]*\n){3,4})?'
500 r'^[ \t]+(?:virtual )?orbital energies:\n'
501 r'(?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+\n{,3})+',
502 """\
503 Brillouin zone point: 1
504 weight= 0.074074
505 k =< 0.333 0.333 0.333> . <b1,b2,b3>
506 =< 0.307 0.307 0.307>
508 orbital energies:
509 0.3919370E+00 ( 10.665eV) occ=1.000
510 0.3908827E+00 ( 10.637eV) occ=1.000 0.4155535E+00 ( 11.308eV) occ=1.000
511 0.3607689E+00 ( 9.817eV) occ=1.000 0.3827820E+00 ( 10.416eV) occ=1.000
512 0.3544000E+00 ( 9.644eV) occ=1.000 0.3782641E+00 ( 10.293eV) occ=1.000
513 0.3531137E+00 ( 9.609eV) occ=1.000 0.3778819E+00 ( 10.283eV) occ=1.000
514 0.2596367E+00 ( 7.065eV) occ=1.000 0.2820723E+00 ( 7.676eV) occ=1.000
516 Brillouin zone point: 2
517 weight= 0.074074
518 k =< -0.000 0.333 0.333> . <b1,b2,b3>
519 =< 0.614 0.000 0.000>
521 orbital energies:
522 0.3967132E+00 ( 10.795eV) occ=1.000
523 0.3920006E+00 ( 10.667eV) occ=1.000 0.4197952E+00 ( 11.423eV) occ=1.000
524 0.3912442E+00 ( 10.646eV) occ=1.000 0.4125086E+00 ( 11.225eV) occ=1.000
525 0.3910472E+00 ( 10.641eV) occ=1.000 0.4124238E+00 ( 11.223eV) occ=1.000
526 0.3153977E+00 ( 8.582eV) occ=1.000 0.3379797E+00 ( 9.197eV) occ=1.000
527 0.2801606E+00 ( 7.624eV) occ=1.000 0.3052478E+00 ( 8.306eV) occ=1.000
528""", re.M) # noqa: E501, W291
530# Parser for kpoint weights for a plane wave calculation
531_kpt_weight = _define_pattern(
532 r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
533 r'^[ \t]+weight=[ \t]+([\S]+)[ \t]*\n',
534 """\
535 Brillouin zone point: 1
536 weight= 0.074074
537""", re.M) # noqa: W291
540# Parse eigenvalues and occupancies from a plane wave calculation
541def _get_pw_kpts(chunk):
542 eval_blocks = []
543 for block in _nwpw_eval_block.findall(chunk):
544 if 'pathlength' not in block:
545 eval_blocks.append(block)
546 if not eval_blocks:
547 return []
548 if 'virtual' in eval_blocks[-1]:
549 occ_block = eval_blocks[-2]
550 virt_block = eval_blocks[-1]
551 else:
552 occ_block = eval_blocks[-1]
553 virt_block = ''
554 kpts = NWChemKpts()
555 _extract_pw_kpts(occ_block, kpts, 1.)
556 _extract_pw_kpts(virt_block, kpts, 0.)
557 for match in _kpt_weight.finditer(occ_block):
558 index, weight = match.groups()
559 kpts.set_weight(index, float(weight))
560 return kpts.to_ibz_kpts(), kpts.to_singlepointkpts()
563# Helper class for keeping track of kpoints and converting to
564# SinglePointKPoint objects.
565class NWChemKpts:
566 def __init__(self):
567 self.data = {}
568 self.ibz_kpts = {}
569 self.weights = {}
571 def add_ibz_kpt(self, index, raw_kpt):
572 kpt = np.array([float(x.strip('>')) for x in raw_kpt.split()[1:4]])
573 self.ibz_kpts[index] = kpt
575 def add_eval(self, index, spin, energy, occ):
576 if index not in self.data:
577 self.data[index] = {}
578 if spin not in self.data[index]:
579 self.data[index][spin] = []
580 self.data[index][spin].append((energy, occ))
582 def set_weight(self, index, weight):
583 self.weights[index] = weight
585 def to_ibz_kpts(self):
586 if not self.ibz_kpts:
587 return np.array([[0., 0., 0.]])
588 sorted_kpts = sorted(list(self.ibz_kpts.items()), key=lambda x: x[0])
589 return np.array(list(zip(*sorted_kpts))[1])
591 def to_singlepointkpts(self):
592 kpts = []
593 for i, (index, spins) in enumerate(self.data.items()):
594 weight = self.weights[index]
595 for spin, (_, data) in enumerate(spins.items()):
596 energies, occs = np.array(sorted(data, key=lambda x: x[0])).T
597 kpts.append(SinglePointKPoint(weight, spin, i, energies, occs))
598 return kpts
601# Extracts MO/band data from a pattern matched by _nwpw_eval_block above
602_kpt = _define_pattern(
603 r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
604 r'^[ \t]+weight=[ \t]+([\S])+[ \t]*\n'
605 r'^[ \t]+k[ \t]+([ \t\S]+)\n'
606 r'(?:^[ \t\S]*\n){1,2}'
607 r'^[ \t]+(?:virtual )?orbital energies:\n'
608 r'((?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+)',
609 """\
610 Brillouin zone point: 1
611 weight= 0.074074
612 k =< 0.333 0.333 0.333> . <b1,b2,b3>
613 =< 0.307 0.307 0.307>
615 orbital energies:
616 0.3919370E+00 ( 10.665eV) occ=1.000
617 0.3908827E+00 ( 10.637eV) occ=1.000 0.4155535E+00 ( 11.308eV) occ=1.000
618 0.3607689E+00 ( 9.817eV) occ=1.000 0.3827820E+00 ( 10.416eV) occ=1.000
619 0.3544000E+00 ( 9.644eV) occ=1.000 0.3782641E+00 ( 10.293eV) occ=1.000
620 0.3531137E+00 ( 9.609eV) occ=1.000 0.3778819E+00 ( 10.283eV) occ=1.000
621 0.2596367E+00 ( 7.065eV) occ=1.000 0.2820723E+00 ( 7.676eV) occ=1.000
622""", re.M) # noqa: E501, W291
625# Extracts kpoints from a plane wave calculation
626def _extract_pw_kpts(chunk, kpts, default_occ):
627 for match in _kpt.finditer(chunk):
628 point, weight, raw_kpt, orbitals = match.groups()
629 index = int(point) - 1
630 for line in orbitals.split('\n'):
631 tokens = line.strip().split()
632 if not tokens:
633 continue
634 ntokens = len(tokens)
635 a_e = float(tokens[0]) * Hartree
636 if ntokens % 3 == 0:
637 a_o = default_occ
638 else:
639 a_o = float(tokens[3].split('=')[1])
640 kpts.add_eval(index, 0, a_e, a_o)
642 if ntokens <= 4:
643 continue
644 if ntokens == 6:
645 b_e = float(tokens[3]) * Hartree
646 b_o = default_occ
647 elif ntokens == 8:
648 b_e = float(tokens[4]) * Hartree
649 b_o = float(tokens[7].split('=')[1])
650 kpts.add_eval(index, 1, b_e, b_o)
651 kpts.set_weight(index, float(weight))
652 kpts.add_ibz_kpt(index, raw_kpt)