Coverage for /builds/debichem-team/python-ase/ase/calculators/test.py: 89.43%
123 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
1from math import pi
3import numpy as np
5from ase.atoms import Atoms
6from ase.calculators.calculator import Calculator, kpts2ndarray
7from ase.calculators.fd import calculate_numerical_forces
8from ase.units import Bohr, Ha
11def make_test_dft_calculation():
12 a = b = 2.0
13 c = 6.0
14 atoms = Atoms(positions=[(0, 0, c / 2)],
15 symbols='H',
16 pbc=(1, 1, 0),
17 cell=(a, b, c),
18 calculator=TestCalculator())
19 return atoms
22class TestCalculator:
23 def __init__(self, nk=8):
24 assert nk % 2 == 0
25 bzk = []
26 weights = []
27 ibzk = []
28 w = 1.0 / nk**2
29 for i in range(-nk + 1, nk, 2):
30 for j in range(-nk + 1, nk, 2):
31 k = (0.5 * i / nk, 0.5 * j / nk, 0)
32 bzk.append(k)
33 if i >= j > 0:
34 ibzk.append(k)
35 if i == j:
36 weights.append(4 * w)
37 else:
38 weights.append(8 * w)
39 assert abs(sum(weights) - 1.0) < 1e-12
40 self.bzk = np.array(bzk)
41 self.ibzk = np.array(ibzk)
42 self.weights = np.array(weights)
44 # Calculate eigenvalues and wave functions:
45 self.init()
47 def init(self):
48 nibzk = len(self.weights)
49 nbands = 1
51 V = -1.0
52 self.eps = 2 * V * (np.cos(2 * pi * self.ibzk[:, 0]) +
53 np.cos(2 * pi * self.ibzk[:, 1]))
54 self.eps.shape = (nibzk, nbands)
56 self.psi = np.zeros((nibzk, 20, 20, 60), complex)
57 phi = np.empty((2, 2, 20, 20, 60))
58 z = np.linspace(-1.5, 1.5, 60, endpoint=False)
59 for i in range(2):
60 x = np.linspace(0, 1, 20, endpoint=False) - i
61 for j in range(2):
62 y = np.linspace(0, 1, 20, endpoint=False) - j
63 r = (((x[:, None]**2 +
64 y**2)[:, :, None] +
65 z**2)**0.5).clip(0, 1)
66 phi = 1.0 - r**2 * (3.0 - 2.0 * r)
67 phase = np.exp(pi * 2j * np.dot(self.ibzk, (i, j, 0)))
68 self.psi += phase[:, None, None, None] * phi
70 def get_pseudo_wave_function(self, band=0, kpt=0, spin=0):
71 assert spin == 0 and band == 0
72 return self.psi[kpt]
74 def get_eigenvalues(self, kpt=0, spin=0):
75 assert spin == 0
76 return self.eps[kpt]
78 def get_number_of_bands(self):
79 return 1
81 def get_k_point_weights(self):
82 return self.weights
84 def get_number_of_spins(self):
85 return 1
87 def get_fermi_level(self):
88 return 0.0
90 def get_pseudo_density(self):
91 n = 0.0
92 for w, eps, psi in zip(self.weights, self.eps[:, 0], self.psi):
93 if eps >= 0.0:
94 continue
95 n += w * (psi * psi.conj()).real
97 n[1:] += n[:0:-1].copy()
98 n[:, 1:] += n[:, :0:-1].copy()
99 n += n.transpose((1, 0, 2)).copy()
100 n /= 8
101 return n
104class TestPotential(Calculator):
105 implemented_properties = ['energy', 'forces']
107 def calculate(self, atoms, properties, system_changes):
108 Calculator.calculate(self, atoms, properties, system_changes)
109 E = 0.0
110 R = atoms.positions
111 F = np.zeros_like(R)
112 for a, r in enumerate(R):
113 D = R - r
114 d = (D**2).sum(1)**0.5
115 x = d - 1.0
116 E += np.vdot(x, x)
117 d[a] = 1
118 F -= (x / d)[:, None] * D
119 energy = 0.25 * E
120 self.results = {'energy': energy, 'forces': F}
123class FreeElectrons(Calculator):
124 """Free-electron band calculator.
126 Parameters:
128 nvalence: int
129 Number of electrons
130 kpts: dict
131 K-point specification.
133 Example:
134 >>> from ase.calculators.test import FreeElectrons
135 >>> calc = FreeElectrons(nvalence=1, kpts={'path': 'GXL'})
136 """
138 implemented_properties = ['energy']
139 default_parameters = {'kpts': np.zeros((1, 3)),
140 'nvalence': 0.0,
141 'nbands': 20,
142 'gridsize': 7}
144 def calculate(self, atoms, properties, system_changes):
145 Calculator.calculate(self, atoms)
146 self.kpts = kpts2ndarray(self.parameters.kpts, atoms)
147 icell = atoms.cell.reciprocal() * 2 * np.pi * Bohr
148 n = self.parameters.gridsize
149 offsets = np.indices((n, n, n)).T.reshape((n**3, 1, 3)) - n // 2
150 eps = 0.5 * (np.dot(self.kpts + offsets, icell)**2).sum(2).T
151 eps.sort()
152 self.eigenvalues = eps[:, :self.parameters.nbands] * Ha
153 self.results = {'energy': 0.0}
155 def get_eigenvalues(self, kpt, spin=0):
156 assert spin == 0
157 return self.eigenvalues[kpt].copy()
159 def get_fermi_level(self):
160 v = self.atoms.get_volume() / Bohr**3
161 kF = (self.parameters.nvalence / v * 3 * np.pi**2)**(1 / 3)
162 return 0.5 * kF**2 * Ha
164 def get_ibz_k_points(self):
165 return self.kpts.copy()
167 def get_number_of_spins(self):
168 return 1
171def gradient_test(atoms, indices=None):
172 """
173 Use numeric_force to compare analytical and numerical forces on atoms
175 If indices is None, test is done on all atoms.
176 """
177 if indices is None:
178 indices = range(len(atoms))
179 f = atoms.get_forces()[indices]
180 print('{:>16} {:>20}'.format('eps', 'max(abs(df))'))
181 for eps in np.logspace(-1, -8, 8):
182 fn = calculate_numerical_forces(atoms, eps, indices)
183 print(f'{eps:16.12f} {abs(fn - f).max():20.12f}')
184 return f, fn