Coverage for /builds/debichem-team/python-ase/ase/calculators/emt.py: 98.90%

182 statements  

« prev     ^ index     » next       coverage.py v7.5.3, created at 2025-03-06 04:00 +0000

1"""Effective medium theory potential.""" 

2from collections import defaultdict 

3from math import log, sqrt 

4 

5import numpy as np 

6 

7from ase.calculators.calculator import ( 

8 Calculator, 

9 PropertyNotImplementedError, 

10 all_changes, 

11) 

12from ase.data import atomic_numbers, chemical_symbols 

13from ase.neighborlist import NeighborList 

14from ase.units import Bohr 

15 

16parameters = { 

17 # E0 s0 V0 eta2 kappa lambda n0 

18 # eV bohr eV bohr^-1 bohr^-1 bohr^-1 bohr^-3 

19 'Al': (-3.28, 3.00, 1.493, 1.240, 2.000, 1.169, 0.00700), 

20 'Cu': (-3.51, 2.67, 2.476, 1.652, 2.740, 1.906, 0.00910), 

21 'Ag': (-2.96, 3.01, 2.132, 1.652, 2.790, 1.892, 0.00547), 

22 'Au': (-3.80, 3.00, 2.321, 1.674, 2.873, 2.182, 0.00703), 

23 'Ni': (-4.44, 2.60, 3.673, 1.669, 2.757, 1.948, 0.01030), 

24 'Pd': (-3.90, 2.87, 2.773, 1.818, 3.107, 2.155, 0.00688), 

25 'Pt': (-5.85, 2.90, 4.067, 1.812, 3.145, 2.192, 0.00802), 

26 # extra parameters - just for fun ... 

27 'H': (-3.21, 1.31, 0.132, 2.652, 2.790, 3.892, 0.00547), 

28 'C': (-3.50, 1.81, 0.332, 1.652, 2.790, 1.892, 0.01322), 

29 'N': (-5.10, 1.88, 0.132, 1.652, 2.790, 1.892, 0.01222), 

30 'O': (-4.60, 1.95, 0.332, 1.652, 2.790, 1.892, 0.00850)} 

31 

32beta = 1.809 # (16 * pi / 3)**(1.0 / 3) / 2**0.5, preserve historical rounding 

33 

34 

35class EMT(Calculator): 

36 """Python implementation of the Effective Medium Potential. 

37 

38 Supports the following standard EMT metals: 

39 Al, Cu, Ag, Au, Ni, Pd and Pt. 

40 

41 In addition, the following elements are supported. 

42 They are NOT well described by EMT, and the parameters 

43 are not for any serious use: 

44 H, C, N, O 

45 

46 Parameters 

47 ---------- 

48 asap_cutoff : bool, default: False 

49 If True the cutoff mimics how ASAP does it; most importantly the global 

50 cutoff is chosen from the largest atom present in the simulation. 

51 If False it is chosen from the largest atom in the parameter table. 

52 True gives the behaviour of ASAP and older EMT implementations, 

53 although the results are not bitwise identical. 

54 

55 Notes 

56 ----- 

57 Formulation mostly follows Jacobsen *et al*. [1]_ 

58 `Documentation in ASAP can also be referred to <https://gitlab.com/asap/ 

59 asap/blob/master/docs/manual/potentials/emt.pdf>`_. 

60 

61 .. [1] K. W. Jacobsen, P. Stoltze, and J. K. Nørskov, 

62 Surf. Sci. 366, 394 (1996). 

63 """ 

64 implemented_properties = ['energy', 'free_energy', 'energies', 'forces', 

65 'stress', 'magmom', 'magmoms'] 

66 

67 nolabel = True 

68 

69 default_parameters = {'asap_cutoff': False} 

70 

71 def __init__(self, **kwargs): 

72 Calculator.__init__(self, **kwargs) 

73 

74 def initialize(self, atoms): 

75 self.rc, self.rc_list, self.acut = self._calc_cutoff(atoms) 

76 

77 numbers = atoms.get_atomic_numbers() 

78 

79 # ia2iz : map from idx of atoms to idx of atomic numbers in self.par 

80 unique_numbers, self.ia2iz = np.unique(numbers, return_inverse=True) 

81 self.par = defaultdict(lambda: np.empty(len(unique_numbers))) 

82 for i, Z in enumerate(unique_numbers): 

83 sym = chemical_symbols[Z] 

84 if sym not in parameters: 

85 raise NotImplementedError(f'No EMT-potential for {sym}') 

86 p = parameters[sym] 

87 s0 = p[1] * Bohr 

88 eta2 = p[3] / Bohr 

89 kappa = p[4] / Bohr 

90 gamma1, gamma2 = self._calc_gammas(s0, eta2, kappa) 

91 self.par['Z'][i] = Z 

92 self.par['E0'][i] = p[0] 

93 self.par['s0'][i] = s0 

94 self.par['V0'][i] = p[2] 

95 self.par['eta2'][i] = eta2 

96 self.par['kappa'][i] = kappa 

97 self.par['lambda'][i] = p[5] / Bohr 

98 self.par['n0'][i] = p[6] / Bohr**3 

99 self.par['inv12gamma1'][i] = 1.0 / (12.0 * gamma1) 

100 self.par['neghalfv0overgamma2'][i] = -0.5 * p[2] / gamma2 

101 

102 self.chi = self.par['n0'][None, :] / self.par['n0'][:, None] 

103 

104 self.energies = np.empty(len(atoms)) 

105 self.forces = np.empty((len(atoms), 3)) 

106 self.stress = np.empty((3, 3)) 

107 self.deds = np.empty(len(atoms)) 

108 

109 self.nl = NeighborList([0.5 * self.rc_list] * len(atoms), 

110 self_interaction=False, bothways=True) 

111 

112 def _calc_cutoff(self, atoms): 

113 """Calculate parameters of the logistic smoothing function etc. 

114 

115 The logistic smoothing function is given by 

116 

117 .. math: 

118 

119 w(r) = \\frac{1}{1 + \\exp a (r - r_\\mathrm{c})} 

120 

121 Returns 

122 ------- 

123 rc : float 

124 "Midpoint" of the logistic smoothing function, set to be the mean 

125 of the 3rd and the 4th nearest-neighbor distances in FCC. 

126 rc_list : float 

127 Cutoff radius for the neighbor search, set to be slightly larger 

128 than ``rc`` depending on ``asap_cutoff``. 

129 acut : float 

130 "Slope" of the smoothing function, set for the smoothing function 

131 value to be ``1e-4`` at the 4th nearest-neighbor distance in FCC. 

132 

133 Notes 

134 ----- 

135 ``maxseq`` is the present FCC Wigner-Seitz radius. ``beta * maxseq`` 

136 (`r1nn`) is the corresponding 1st nearest-neighbor distance in FCC. 

137 The 2nd, 3rd, 4th nearest-neighbor distances in FCC are given using 

138 ``r1nn`` by ``sqrt(2) * r1nn``, ``sqrt(3) * r1nn``, ``sqrt(4) * r1nn``, 

139 respectively. 

140 """ 

141 numbers = atoms.get_atomic_numbers() 

142 if self.parameters['asap_cutoff']: 

143 relevant_pars = { 

144 symb: p 

145 for symb, p in parameters.items() 

146 if atomic_numbers[symb] in numbers 

147 } 

148 else: 

149 relevant_pars = parameters 

150 maxseq = max(par[1] for par in relevant_pars.values()) * Bohr 

151 r1nn = beta * maxseq # 1st NN distance in FCC 

152 rc = r1nn * 0.5 * (sqrt(3.0) + 2.0) # mean of 3NN and 4NN dists. 

153 r4nn = r1nn * 2.0 # 4NN distance in FCC 

154 eps = 1e-4 # value at r4nn, should be small 

155 

156 # "slope" is set so that the function value becomes eps at r4nn 

157 acut = log(1.0 / eps - 1.0) / (r4nn - rc) 

158 

159 rc_list = rc * 1.045 if self.parameters['asap_cutoff'] else rc + 0.5 

160 

161 return rc, rc_list, acut 

162 

163 def _calc_gammas(self, s0, eta2, kappa): 

164 n = np.array([12, 6, 24]) # numbers of 1, 2, 3NN sites in fcc 

165 r = beta * s0 * np.sqrt([1.0, 2.0, 3.0]) # distances of 1, 2, 3NNs 

166 w = 1.0 / (1.0 + np.exp(self.acut * (r - self.rc))) 

167 x = n * w / 12.0 

168 gamma1 = x @ np.exp(-eta2 * (r - beta * s0)) 

169 gamma2 = x @ np.exp(-kappa / beta * (r - beta * s0)) 

170 return gamma1, gamma2 

171 

172 def calculate(self, atoms=None, properties=['energy'], 

173 system_changes=all_changes): 

174 Calculator.calculate(self, atoms, properties, system_changes) 

175 

176 if 'numbers' in system_changes: 

177 self.initialize(self.atoms) 

178 

179 self.nl.update(self.atoms) 

180 

181 self.energies[:] = 0.0 

182 self.forces[:] = 0.0 

183 self.stress[:] = 0.0 

184 self.deds[:] = 0.0 

185 

186 natoms = len(self.atoms) 

187 

188 # store nearest neighbor info for all the atoms 

189 # suffixes 's' and 'o': contributions from self and the other atoms 

190 ps = {} 

191 for a1 in range(natoms): 

192 a2, d, r = self._get_neighbors(a1) 

193 if len(a2) == 0: 

194 continue 

195 w, dwdroverw = self._calc_theta(r) 

196 dsigma1s, dsigma1o = self._calc_dsigma1(a1, a2, r, w) 

197 dsigma2s, dsigma2o = self._calc_dsigma2(a1, a2, r, w) 

198 ps[a1] = { 

199 'a2': a2, 

200 'd': d, 

201 'r': r, 

202 'invr': 1.0 / r, 

203 'w': w, 

204 'dwdroverw': dwdroverw, 

205 'dsigma1s': dsigma1s, 

206 'dsigma1o': dsigma1o, 

207 'dsigma2s': dsigma2s, 

208 'dsigma2o': dsigma2o, 

209 } 

210 

211 # deds is computed in _calc_e_c_a2 

212 # since deds for all the atoms are used later in _calc_f_c_a2, 

213 # _calc_e_c_a2 must be called beforehand for all the atoms 

214 for a1, p in ps.items(): 

215 a2 = p['a2'] 

216 dsigma1s = p['dsigma1s'] 

217 self._calc_e_c_a2(a1, dsigma1s) 

218 

219 for a1, p in ps.items(): 

220 a2 = p['a2'] 

221 d = p['d'] 

222 invr = p['invr'] 

223 dwdroverw = p['dwdroverw'] 

224 dsigma1s = p['dsigma1s'] 

225 dsigma1o = p['dsigma1o'] 

226 dsigma2s = p['dsigma2s'] 

227 dsigma2o = p['dsigma2o'] 

228 self._calc_fs_c_a2(a1, a2, d, invr, dwdroverw, dsigma1s, dsigma1o) 

229 self._calc_efs_a1(a1, a2, d, invr, dwdroverw, dsigma2s, dsigma2o) 

230 

231 # subtract E0 (ASAP convention) 

232 self.energies -= self.par['E0'][self.ia2iz] 

233 

234 energy = np.add.reduce(self.energies, axis=0) 

235 self.results['energy'] = self.results['free_energy'] = energy 

236 self.results['energies'] = self.energies 

237 self.results['forces'] = self.forces 

238 

239 if self.atoms.cell.rank == 3: 

240 self.stress = (self.stress + self.stress.T) * 0.5 # symmetrize 

241 self.stress /= self.atoms.get_volume() 

242 self.results['stress'] = self.stress.flat[[0, 4, 8, 5, 2, 1]] 

243 elif 'stress' in properties: 

244 raise PropertyNotImplementedError 

245 

246 def _get_neighbors(self, a1): 

247 positions = self.atoms.positions 

248 cell = self.atoms.cell 

249 neighbors, offsets = self.nl.get_neighbors(a1) 

250 offsets = np.dot(offsets, cell) 

251 d = positions[neighbors] + offsets - positions[a1] 

252 r = np.sqrt(np.add.reduce(d**2, axis=1)) 

253 mask = r < self.rc_list 

254 return neighbors[mask], d[mask], r[mask] 

255 

256 def _calc_theta(self, r): 

257 """Calculate cutoff function and its r derivative""" 

258 w = 1.0 / (1.0 + np.exp(self.acut * (r - self.rc))) 

259 dwdroverw = self.acut * (w - 1.0) 

260 return w, dwdroverw 

261 

262 def _calc_dsigma1(self, a1, a2, r, w): 

263 """Calculate contributions of neighbors to sigma1""" 

264 s0s = self.par['s0'][self.ia2iz[a1]] 

265 s0o = self.par['s0'][self.ia2iz[a2]] 

266 eta2s = self.par['eta2'][self.ia2iz[a1]] 

267 eta2o = self.par['eta2'][self.ia2iz[a2]] 

268 chi = self.chi[self.ia2iz[a1], self.ia2iz[a2]] 

269 

270 dsigma1s = np.exp(-eta2o * (r - beta * s0o)) * chi * w 

271 dsigma1o = np.exp(-eta2s * (r - beta * s0s)) / chi * w 

272 

273 return dsigma1s, dsigma1o 

274 

275 def _calc_dsigma2(self, a1, a2, r, w): 

276 """Calculate contributions of neighbors to sigma2""" 

277 s0s = self.par['s0'][self.ia2iz[a1]] 

278 s0o = self.par['s0'][self.ia2iz[a2]] 

279 kappas = self.par['kappa'][self.ia2iz[a1]] 

280 kappao = self.par['kappa'][self.ia2iz[a2]] 

281 chi = self.chi[self.ia2iz[a1], self.ia2iz[a2]] 

282 

283 dsigma2s = np.exp(-kappao * (r / beta - s0o)) * chi * w 

284 dsigma2o = np.exp(-kappas * (r / beta - s0s)) / chi * w 

285 

286 return dsigma2s, dsigma2o 

287 

288 def _calc_e_c_a2(self, a1, dsigma1s): 

289 """Calculate E_c and the second term of E_AS and their s derivatives""" 

290 e0s = self.par['E0'][self.ia2iz[a1]] 

291 v0s = self.par['V0'][self.ia2iz[a1]] 

292 eta2s = self.par['eta2'][self.ia2iz[a1]] 

293 lmds = self.par['lambda'][self.ia2iz[a1]] 

294 kappas = self.par['kappa'][self.ia2iz[a1]] 

295 inv12gamma1s = self.par['inv12gamma1'][self.ia2iz[a1]] 

296 

297 sigma1 = np.add.reduce(dsigma1s) 

298 ds = -1.0 * np.log(sigma1 * inv12gamma1s) / (beta * eta2s) 

299 

300 lmdsds = lmds * ds 

301 expneglmdds = np.exp(-1.0 * lmdsds) 

302 self.energies[a1] += e0s * (1.0 + lmdsds) * expneglmdds 

303 self.deds[a1] += -1.0 * e0s * lmds * lmdsds * expneglmdds 

304 

305 sixv0expnegkppds = 6.0 * v0s * np.exp(-1.0 * kappas * ds) 

306 self.energies[a1] += sixv0expnegkppds 

307 self.deds[a1] += -1.0 * kappas * sixv0expnegkppds 

308 

309 self.deds[a1] /= -1.0 * beta * eta2s * sigma1 # factor from ds/dr 

310 

311 def _calc_efs_a1(self, a1, a2, d, invr, dwdroverw, dsigma2s, dsigma2o): 

312 """Calculate the first term of E_AS and derivatives""" 

313 neghalfv0overgamma2s = self.par['neghalfv0overgamma2'][self.ia2iz[a1]] 

314 neghalfv0overgamma2o = self.par['neghalfv0overgamma2'][self.ia2iz[a2]] 

315 kappas = self.par['kappa'][self.ia2iz[a1]] 

316 kappao = self.par['kappa'][self.ia2iz[a2]] 

317 

318 es = neghalfv0overgamma2s * dsigma2s 

319 eo = neghalfv0overgamma2o * dsigma2o 

320 self.energies[a1] += 0.5 * np.add.reduce(es + eo, axis=0) 

321 

322 dedrs = es * (dwdroverw - kappao / beta) 

323 dedro = eo * (dwdroverw - kappas / beta) 

324 f = ((dedrs + dedro) * invr)[:, None] * d 

325 self.forces[a1] += np.add.reduce(f, axis=0) 

326 self.stress += 0.5 * np.dot(d.T, f) # compensate double counting 

327 

328 def _calc_fs_c_a2(self, a1, a2, d, invr, dwdroverw, dsigma1s, dsigma1o): 

329 """Calculate forces and stress from E_c and the second term of E_AS""" 

330 eta2s = self.par['eta2'][self.ia2iz[a1]] 

331 eta2o = self.par['eta2'][self.ia2iz[a2]] 

332 

333 ddsigma1sdr = dsigma1s * (dwdroverw - eta2o) 

334 ddsigma1odr = dsigma1o * (dwdroverw - eta2s) 

335 dedrs = self.deds[a1] * ddsigma1sdr 

336 dedro = self.deds[a2] * ddsigma1odr 

337 f = ((dedrs + dedro) * invr)[:, None] * d 

338 self.forces[a1] += np.add.reduce(f, axis=0) 

339 self.stress += 0.5 * np.dot(d.T, f) # compensate double counting