Coverage for /builds/debichem-team/python-ase/ase/ga/ofp_comparator.py: 50.33%

306 statements  

« prev     ^ index     » next       coverage.py v7.5.3, created at 2025-03-06 04:00 +0000

1from itertools import combinations_with_replacement 

2from math import erf 

3 

4import matplotlib.pyplot as plt 

5import numpy as np 

6from scipy.spatial.distance import cdist 

7 

8from ase.neighborlist import NeighborList 

9from ase.utils import pbc2pbc 

10 

11 

12class OFPComparator: 

13 """Implementation of comparison using Oganov's fingerprint (OFP) 

14 functions, based on: 

15 

16 * :doi:`Oganov, Valle, J. Chem. Phys. 130, 104504 (2009) 

17 <10.1063/1.3079326>` 

18 

19 * :doi:`Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632 

20 <10.1016/j.cpc.2010.06.007>` 

21 

22 Parameters: 

23 

24 n_top: int or None 

25 The number of atoms to optimize (None = include all). 

26 

27 dE: float 

28 Energy difference above which two structures are 

29 automatically considered to be different. (Default 1 eV) 

30 

31 cos_dist_max: float 

32 Maximal cosine distance between two structures in 

33 order to be still considered the same structure. Default 5e-3 

34 

35 rcut: float 

36 Cutoff radius in Angstrom for the fingerprints. 

37 (Default 20 Angstrom) 

38 

39 binwidth: float 

40 Width in Angstrom of the bins over which the fingerprints 

41 are discretized. (Default 0.05 Angstrom) 

42 

43 pbc: list of three booleans or None 

44 Specifies whether to apply periodic boundary conditions 

45 along each of the three unit cell vectors when calculating 

46 the fingerprint. The default (None) is to apply PBCs in all 

47 3 directions. 

48 

49 Note: for isolated systems (pbc = [False, False, False]), 

50 the pair correlation function itself is always short-ranged 

51 (decays to zero beyond a certain radius), so unity is not 

52 subtracted for calculating the fingerprint. Also the 

53 volume normalization disappears. 

54 

55 maxdims: list of three floats or None 

56 If PBCs in only 1 or 2 dimensions are specified, the 

57 maximal thicknesses along the non-periodic directions can 

58 be specified here (the values given for the periodic 

59 directions will not be used). If set to None (the 

60 default), the length of the cell vector along the 

61 non-periodic direction is used. 

62 

63 Note: in this implementation, the cell vectors are 

64 assumed to be orthogonal. 

65 

66 sigma: float 

67 Standard deviation of the gaussian smearing to be applied 

68 in the calculation of the fingerprints (in 

69 Angstrom). Default 0.02 Angstrom. 

70 

71 nsigma: int 

72 Distance (as the number of standard deviations sigma) at 

73 which the gaussian smearing is cut off (i.e. no smearing 

74 beyond that distance). (Default 4) 

75 

76 recalculate: boolean 

77 If True, ignores the fingerprints stored in 

78 atoms.info and recalculates them. (Default False) 

79 

80 """ 

81 

82 def __init__(self, n_top=None, dE=1.0, cos_dist_max=5e-3, rcut=20., 

83 binwidth=0.05, sigma=0.02, nsigma=4, pbc=True, 

84 maxdims=None, recalculate=False): 

85 self.n_top = n_top or 0 

86 self.dE = dE 

87 self.cos_dist_max = cos_dist_max 

88 self.rcut = rcut 

89 self.binwidth = binwidth 

90 self.pbc = pbc2pbc(pbc) 

91 

92 if maxdims is None: 

93 self.maxdims = [None] * 3 

94 else: 

95 self.maxdims = maxdims 

96 

97 self.sigma = sigma 

98 self.nsigma = nsigma 

99 self.recalculate = recalculate 

100 self.dimensions = self.pbc.sum() 

101 

102 if self.dimensions == 1 or self.dimensions == 2: 

103 for direction in range(3): 

104 if not self.pbc[direction]: 

105 if self.maxdims[direction] is not None: 

106 if self.maxdims[direction] <= 0: 

107 e = '''If a max thickness is specificed in maxdims 

108 for a non-periodic direction, it has to be 

109 strictly positive.''' 

110 raise ValueError(e) 

111 

112 def looks_like(self, a1, a2): 

113 """ Return if structure a1 or a2 are similar or not. """ 

114 if len(a1) != len(a2): 

115 raise Exception('The two configurations are not the same size.') 

116 

117 # first we check the energy criteria 

118 if a1.calc is not None and a2.calc is not None: 

119 dE = abs(a1.get_potential_energy() - a2.get_potential_energy()) 

120 if dE >= self.dE: 

121 return False 

122 

123 # then we check the structure 

124 cos_dist = self._compare_structure(a1, a2) 

125 verdict = cos_dist < self.cos_dist_max 

126 return verdict 

127 

128 def _json_encode(self, fingerprints, typedic): 

129 """ json does not accept tuples nor integers as dict keys, 

130 so in order to write the fingerprints to atoms.info, we need 

131 to convert them to strings """ 

132 fingerprints_encoded = {} 

133 for key, val in fingerprints.items(): 

134 try: 

135 newkey = "_".join(map(str, list(key))) 

136 except TypeError: 

137 newkey = str(key) 

138 if isinstance(val, dict): 

139 fingerprints_encoded[newkey] = { 

140 str(key2): val2 for key2, val2 in val.items()} 

141 else: 

142 fingerprints_encoded[newkey] = val 

143 typedic_encoded = {} 

144 for key, val in typedic.items(): 

145 newkey = str(key) 

146 typedic_encoded[newkey] = val 

147 return [fingerprints_encoded, typedic_encoded] 

148 

149 def _json_decode(self, fingerprints, typedic): 

150 """ This is the reverse operation of _json_encode """ 

151 fingerprints_decoded = {} 

152 for key, val in fingerprints.items(): 

153 newkey = list(map(int, key.split("_"))) 

154 if len(newkey) > 1: 

155 newkey = tuple(newkey) 

156 else: 

157 newkey = newkey[0] 

158 

159 if isinstance(val, dict): 

160 fingerprints_decoded[newkey] = { 

161 int(key2): np.array(val2) for key2, val2 in val.items() 

162 } 

163 else: 

164 fingerprints_decoded[newkey] = np.array(val) 

165 typedic_decoded = {} 

166 for key, val in typedic.items(): 

167 newkey = int(key) 

168 typedic_decoded[newkey] = val 

169 return [fingerprints_decoded, typedic_decoded] 

170 

171 def _compare_structure(self, a1, a2): 

172 """ Returns the cosine distance between the two structures, 

173 using their fingerprints. """ 

174 

175 if len(a1) != len(a2): 

176 raise Exception('The two configurations are not the same size.') 

177 

178 a1top = a1[-self.n_top:] 

179 a2top = a2[-self.n_top:] 

180 

181 if 'fingerprints' in a1.info and not self.recalculate: 

182 fp1, typedic1 = a1.info['fingerprints'] 

183 fp1, typedic1 = self._json_decode(fp1, typedic1) 

184 else: 

185 fp1, typedic1 = self._take_fingerprints(a1top) 

186 a1.info['fingerprints'] = self._json_encode(fp1, typedic1) 

187 

188 if 'fingerprints' in a2.info and not self.recalculate: 

189 fp2, typedic2 = a2.info['fingerprints'] 

190 fp2, typedic2 = self._json_decode(fp2, typedic2) 

191 else: 

192 fp2, typedic2 = self._take_fingerprints(a2top) 

193 a2.info['fingerprints'] = self._json_encode(fp2, typedic2) 

194 

195 if sorted(fp1) != sorted(fp2): 

196 raise AssertionError('The two structures have fingerprints ' 

197 'with different compounds.') 

198 for key in typedic1: 

199 if not np.array_equal(typedic1[key], typedic2[key]): 

200 raise AssertionError('The two structures have a different ' 

201 'stoichiometry or ordering!') 

202 

203 cos_dist = self._cosine_distance(fp1, fp2, typedic1) 

204 return cos_dist 

205 

206 def _get_volume(self, a): 

207 ''' Calculates the normalizing value, and other parameters 

208 (pmin,pmax,qmin,qmax) that are used for surface area calculation 

209 in the case of 1 or 2-D periodicity.''' 

210 

211 cell = a.get_cell() 

212 scalpos = a.get_scaled_positions() 

213 

214 # defaults: 

215 volume = 1. 

216 pmin, pmax, qmin, qmax = [0.] * 4 

217 

218 if self.dimensions == 1 or self.dimensions == 2: 

219 for direction in range(3): 

220 if not self.pbc[direction]: 

221 if self.maxdims[direction] is None: 

222 maxdim = np.linalg.norm(cell[direction, :]) 

223 self.maxdims[direction] = maxdim 

224 

225 pbc_dirs = [i for i in range(3) if self.pbc[i]] 

226 non_pbc_dirs = [i for i in range(3) if not self.pbc[i]] 

227 

228 if self.dimensions == 3: 

229 volume = abs(np.dot(np.cross(cell[0, :], cell[1, :]), cell[2, :])) 

230 

231 elif self.dimensions == 2: 

232 non_pbc_dir = non_pbc_dirs[0] 

233 

234 a = np.cross(cell[pbc_dirs[0], :], cell[pbc_dirs[1], :]) 

235 b = self.maxdims[non_pbc_dir] 

236 b /= np.linalg.norm(cell[non_pbc_dir, :]) 

237 

238 volume = np.abs(np.dot(a, b * cell[non_pbc_dir, :])) 

239 

240 maxpos = np.max(scalpos[:, non_pbc_dir]) 

241 minpos = np.min(scalpos[:, non_pbc_dir]) 

242 pwidth = maxpos - minpos 

243 pmargin = 0.5 * (b - pwidth) 

244 # note: here is a place where we assume that the 

245 # non-periodic direction is orthogonal to the periodic ones: 

246 pmin = np.min(scalpos[:, non_pbc_dir]) - pmargin 

247 pmin *= np.linalg.norm(cell[non_pbc_dir, :]) 

248 pmax = np.max(scalpos[:, non_pbc_dir]) + pmargin 

249 pmax *= np.linalg.norm(cell[non_pbc_dir, :]) 

250 

251 elif self.dimensions == 1: 

252 pbc_dir = pbc_dirs[0] 

253 

254 v0 = cell[non_pbc_dirs[0], :] 

255 b0 = self.maxdims[non_pbc_dirs[0]] 

256 b0 /= np.linalg.norm(cell[non_pbc_dirs[0], :]) 

257 v1 = cell[non_pbc_dirs[1], :] 

258 b1 = self.maxdims[non_pbc_dirs[1]] 

259 b1 /= np.linalg.norm(cell[non_pbc_dirs[1], :]) 

260 

261 volume = np.abs(np.dot(np.cross(b0 * v0, b1 * v1), 

262 cell[pbc_dir, :])) 

263 

264 # note: here is a place where we assume that the 

265 # non-periodic direction is orthogonal to the periodic ones: 

266 maxpos = np.max(scalpos[:, non_pbc_dirs[0]]) 

267 minpos = np.min(scalpos[:, non_pbc_dirs[0]]) 

268 pwidth = maxpos - minpos 

269 pmargin = 0.5 * (b0 - pwidth) 

270 

271 pmin = np.min(scalpos[:, non_pbc_dirs[0]]) - pmargin 

272 pmin *= np.linalg.norm(cell[non_pbc_dirs[0], :]) 

273 pmax = np.max(scalpos[:, non_pbc_dirs[0]]) + pmargin 

274 pmax *= np.linalg.norm(cell[non_pbc_dirs[0], :]) 

275 

276 maxpos = np.max(scalpos[:, non_pbc_dirs[1]]) 

277 minpos = np.min(scalpos[:, non_pbc_dirs[1]]) 

278 qwidth = maxpos - minpos 

279 qmargin = 0.5 * (b1 - qwidth) 

280 

281 qmin = np.min(scalpos[:, non_pbc_dirs[1]]) - qmargin 

282 qmin *= np.linalg.norm(cell[non_pbc_dirs[1], :]) 

283 qmax = np.max(scalpos[:, non_pbc_dirs[1]]) + qmargin 

284 qmax *= np.linalg.norm(cell[non_pbc_dirs[1], :]) 

285 

286 elif self.dimensions == 0: 

287 volume = 1. 

288 

289 return [volume, pmin, pmax, qmin, qmax] 

290 

291 def _take_fingerprints(self, atoms, individual=False): 

292 """ Returns a [fingerprints,typedic] list, where fingerprints 

293 is a dictionary with the fingerprints, and typedic is a 

294 dictionary with the list of atom indices for each element 

295 (or "type") in the atoms object. 

296 The keys in the fingerprints dictionary are the (A,B) tuples, 

297 which are the different element-element combinations in the 

298 atoms object (A and B are the atomic numbers). 

299 When A != B, the (A,B) tuple is sorted (A < B). 

300 

301 If individual=True, a dict is returned, where each atom index 

302 has an {atomic_number:fingerprint} dict as value. 

303 If individual=False, the fingerprints from atoms of the same 

304 atomic number are added together.""" 

305 

306 pos = atoms.get_positions() 

307 num = atoms.get_atomic_numbers() 

308 cell = atoms.get_cell() 

309 

310 unique_types = np.unique(num) 

311 posdic = {} 

312 typedic = {} 

313 for t in unique_types: 

314 tlist = [i for i, atom in enumerate(atoms) if atom.number == t] 

315 typedic[t] = tlist 

316 posdic[t] = pos[tlist] 

317 

318 # determining the volume normalization and other parameters 

319 volume, pmin, pmax, qmin, qmax = self._get_volume(atoms) 

320 

321 # functions for calculating the surface area 

322 non_pbc_dirs = [i for i in range(3) if not self.pbc[i]] 

323 

324 def surface_area_0d(r): 

325 return 4 * np.pi * (r**2) 

326 

327 def surface_area_1d(r, pos): 

328 q0 = pos[non_pbc_dirs[1]] 

329 phi1 = np.lib.scimath.arccos((qmax - q0) / r).real 

330 phi2 = np.pi - np.lib.scimath.arccos((qmin - q0) / r).real 

331 factor = 1 - (phi1 + phi2) / np.pi 

332 return surface_area_2d(r, pos) * factor 

333 

334 def surface_area_2d(r, pos): 

335 p0 = pos[non_pbc_dirs[0]] 

336 area = np.minimum(pmax - p0, r) + np.minimum(p0 - pmin, r) 

337 area *= 2 * np.pi * r 

338 return area 

339 

340 def surface_area_3d(r): 

341 return 4 * np.pi * (r**2) 

342 

343 # build neighborlist 

344 # this is computationally the most intensive part 

345 a = atoms.copy() 

346 a.set_pbc(self.pbc) 

347 nl = NeighborList([self.rcut / 2.] * len(a), skin=0., 

348 self_interaction=False, bothways=True) 

349 nl.update(a) 

350 

351 # parameters for the binning: 

352 m = int(np.ceil(self.nsigma * self.sigma / self.binwidth)) 

353 x = 0.25 * np.sqrt(2) * self.binwidth * (2 * m + 1) * 1. / self.sigma 

354 smearing_norm = erf(x) 

355 nbins = int(np.ceil(self.rcut * 1. / self.binwidth)) 

356 bindist = self.binwidth * np.arange(1, nbins + 1) 

357 

358 def take_individual_rdf(index, unique_type): 

359 # Computes the radial distribution function of atoms 

360 # of type unique_type around the atom with index "index". 

361 rdf = np.zeros(nbins) 

362 

363 if self.dimensions == 3: 

364 weights = 1. / surface_area_3d(bindist) 

365 elif self.dimensions == 2: 

366 weights = 1. / surface_area_2d(bindist, pos[index]) 

367 elif self.dimensions == 1: 

368 weights = 1. / surface_area_1d(bindist, pos[index]) 

369 elif self.dimensions == 0: 

370 weights = 1. / surface_area_0d(bindist) 

371 weights /= self.binwidth 

372 

373 indices, offsets = nl.get_neighbors(index) 

374 valid = np.where(num[indices] == unique_type) 

375 p = pos[indices[valid]] + np.dot(offsets[valid], cell) 

376 r = cdist(p, [pos[index]]) 

377 bins = np.floor(r / self.binwidth) 

378 

379 for i in range(-m, m + 1): 

380 newbins = bins + i 

381 valid = np.where((newbins >= 0) & (newbins < nbins)) 

382 valid_bins = newbins[valid].astype(int) 

383 values = weights[valid_bins] 

384 

385 c = 0.25 * np.sqrt(2) * self.binwidth * 1. / self.sigma 

386 values *= 0.5 * erf(c * (2 * i + 1)) - \ 

387 0.5 * erf(c * (2 * i - 1)) 

388 values /= smearing_norm 

389 

390 for j, valid_bin in enumerate(valid_bins): 

391 rdf[valid_bin] += values[j] 

392 

393 rdf /= len(typedic[unique_type]) * 1. / volume 

394 return rdf 

395 

396 fingerprints = {} 

397 if individual: 

398 for i in range(len(atoms)): 

399 fingerprints[i] = {} 

400 for unique_type in unique_types: 

401 fingerprint = take_individual_rdf(i, unique_type) 

402 if self.dimensions > 0: 

403 fingerprint -= 1 

404 fingerprints[i][unique_type] = fingerprint 

405 else: 

406 for t1, t2 in combinations_with_replacement(unique_types, r=2): 

407 key = (t1, t2) 

408 fingerprint = np.zeros(nbins) 

409 for i in typedic[t1]: 

410 fingerprint += take_individual_rdf(i, t2) 

411 fingerprint /= len(typedic[t1]) 

412 if self.dimensions > 0: 

413 fingerprint -= 1 

414 fingerprints[key] = fingerprint 

415 

416 return [fingerprints, typedic] 

417 

418 def _calculate_local_orders(self, individual_fingerprints, typedic, 

419 volume): 

420 """ Returns a list with the local order for every atom, 

421 using the definition of local order from 

422 Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632 

423 :doi:`10.1016/j.cpc.2010.06.007`""" 

424 

425 # total number of atoms: 

426 n_tot = sum(len(typedic[key]) for key in typedic) 

427 inv_n_tot = 1. / n_tot 

428 

429 local_orders = [] 

430 for fingerprints in individual_fingerprints.values(): 

431 local_order = 0 

432 for unique_type, fingerprint in fingerprints.items(): 

433 term = np.linalg.norm(fingerprint)**2 

434 term *= self.binwidth 

435 term *= (volume * inv_n_tot)**(-1 / 3) 

436 term *= len(typedic[unique_type]) * inv_n_tot 

437 local_order += term 

438 local_orders.append(np.sqrt(local_order)) 

439 

440 return local_orders 

441 

442 def get_local_orders(self, a): 

443 """ Returns the local orders of all the atoms.""" 

444 

445 a_top = a[-self.n_top:] 

446 key = 'individual_fingerprints' 

447 

448 if key in a.info and not self.recalculate: 

449 fp, typedic = self._json_decode(*a.info[key]) 

450 else: 

451 fp, typedic = self._take_fingerprints(a_top, individual=True) 

452 a.info[key] = self._json_encode(fp, typedic) 

453 

454 volume, _pmin, _pmax, _qmin, _qmax = self._get_volume(a_top) 

455 return self._calculate_local_orders(fp, typedic, volume) 

456 

457 def _cosine_distance(self, fp1, fp2, typedic): 

458 """ Returns the cosine distance from two fingerprints. 

459 It also needs information about the number of atoms from 

460 each element, which is included in "typedic".""" 

461 

462 keys = sorted(fp1) 

463 

464 # calculating the weights: 

465 w = {} 

466 wtot = 0 

467 for key in keys: 

468 weight = len(typedic[key[0]]) * len(typedic[key[1]]) 

469 wtot += weight 

470 w[key] = weight 

471 for key in keys: 

472 w[key] *= 1. / wtot 

473 

474 # calculating the fingerprint norms: 

475 norm1 = 0 

476 norm2 = 0 

477 for key in keys: 

478 norm1 += (np.linalg.norm(fp1[key])**2) * w[key] 

479 norm2 += (np.linalg.norm(fp2[key])**2) * w[key] 

480 norm1 = np.sqrt(norm1) 

481 norm2 = np.sqrt(norm2) 

482 

483 # calculating the distance: 

484 distance = 0 

485 for key in keys: 

486 distance += np.sum(fp1[key] * fp2[key]) * w[key] / (norm1 * norm2) 

487 

488 distance = 0.5 * (1 - distance) 

489 return distance 

490 

491 def plot_fingerprints(self, a, prefix=''): 

492 """ Function for quickly plotting all the fingerprints. 

493 Prefix = a prefix you want to give to the resulting PNG file.""" 

494 

495 if 'fingerprints' in a.info and not self.recalculate: 

496 fp, typedic = a.info['fingerprints'] 

497 fp, typedic = self._json_decode(fp, typedic) 

498 else: 

499 a_top = a[-self.n_top:] 

500 fp, typedic = self._take_fingerprints(a_top) 

501 a.info['fingerprints'] = self._json_encode(fp, typedic) 

502 

503 npts = int(np.ceil(self.rcut * 1. / self.binwidth)) 

504 x = np.linspace(0, self.rcut, npts, endpoint=False) 

505 

506 for key, val in fp.items(): 

507 plt.plot(x, val) 

508 suffix = f"_fp_{key[0]}_{key[1]}.png" 

509 plt.savefig(prefix + suffix) 

510 plt.clf() 

511 

512 def plot_individual_fingerprints(self, a, prefix=''): 

513 """ Function for plotting all the individual fingerprints. 

514 Prefix = a prefix for the resulting PNG file.""" 

515 if 'individual_fingerprints' in a.info and not self.recalculate: 

516 fp, typedic = a.info['individual_fingerprints'] 

517 else: 

518 a_top = a[-self.n_top:] 

519 fp, typedic = self._take_fingerprints(a_top, individual=True) 

520 a.info['individual_fingerprints'] = [fp, typedic] 

521 

522 npts = int(np.ceil(self.rcut * 1. / self.binwidth)) 

523 x = np.linspace(0, self.rcut, npts, endpoint=False) 

524 

525 for key, val in fp.items(): 

526 for key2, val2 in val.items(): 

527 plt.plot(x, val2) 

528 plt.ylim([-1, 10]) 

529 suffix = f"_individual_fp_{key}_{key2}.png" 

530 plt.savefig(prefix + suffix) 

531 plt.clf()