Coverage for /builds/debichem-team/python-ase/ase/optimize/optimize.py: 94.77%
172 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-03-06 04:00 +0000
1"""Structure optimization. """
2import time
3import warnings
4from collections.abc import Callable
5from math import sqrt
6from os.path import isfile
7from typing import IO, Any, Dict, List, Optional, Tuple, Union
9from ase import Atoms
10from ase.calculators.calculator import PropertyNotImplementedError
11from ase.filters import UnitCellFilter
12from ase.parallel import world
13from ase.utils import IOContext, lazyproperty
14from ase.utils.abc import Optimizable
16DEFAULT_MAX_STEPS = 100_000_000
19class RestartError(RuntimeError):
20 pass
23class OptimizableAtoms(Optimizable):
24 def __init__(self, atoms):
25 self.atoms = atoms
27 def get_positions(self):
28 return self.atoms.get_positions()
30 def set_positions(self, positions):
31 self.atoms.set_positions(positions)
33 def get_forces(self):
34 return self.atoms.get_forces()
36 @lazyproperty
37 def _use_force_consistent_energy(self):
38 # This boolean is in principle invalidated if the
39 # calculator changes. This can lead to weird things
40 # in multi-step optimizations.
41 try:
42 self.atoms.get_potential_energy(force_consistent=True)
43 except PropertyNotImplementedError:
44 # warnings.warn(
45 # 'Could not get force consistent energy (\'free_energy\'). '
46 # 'Please make sure calculator provides \'free_energy\', even '
47 # 'if equal to the ordinary energy. '
48 # 'This will raise an error in future versions of ASE.',
49 # FutureWarning)
50 return False
51 else:
52 return True
54 def get_potential_energy(self):
55 force_consistent = self._use_force_consistent_energy
56 return self.atoms.get_potential_energy(
57 force_consistent=force_consistent)
59 def iterimages(self):
60 # XXX document purpose of iterimages
61 return self.atoms.iterimages()
63 def __len__(self):
64 # TODO: return 3 * len(self.atoms), because we want the length
65 # of this to be the number of DOFs
66 return len(self.atoms)
69class Dynamics(IOContext):
70 """Base-class for all MD and structure optimization classes."""
72 def __init__(
73 self,
74 atoms: Atoms,
75 logfile: Optional[Union[IO, str]] = None,
76 trajectory: Optional[str] = None,
77 append_trajectory: bool = False,
78 master: Optional[bool] = None,
79 comm=world,
80 *,
81 loginterval: int = 1,
82 ):
83 """Dynamics object.
85 Parameters
86 ----------
87 atoms : Atoms object
88 The Atoms object to operate on.
90 logfile : file object or str
91 If *logfile* is a string, a file with that name will be opened.
92 Use '-' for stdout.
94 trajectory : Trajectory object or str
95 Attach trajectory object. If *trajectory* is a string a
96 Trajectory will be constructed. Use *None* for no
97 trajectory.
99 append_trajectory : bool
100 Defaults to False, which causes the trajectory file to be
101 overwriten each time the dynamics is restarted from scratch.
102 If True, the new structures are appended to the trajectory
103 file instead.
105 master : bool
106 Defaults to None, which causes only rank 0 to save files. If set to
107 true, this rank will save files.
109 comm : Communicator object
110 Communicator to handle parallel file reading and writing.
112 loginterval : int, default: 1
113 Only write a log line for every *loginterval* time steps.
114 """
115 self.atoms = atoms
116 self.optimizable = atoms.__ase_optimizable__()
117 self.logfile = self.openfile(file=logfile, comm=comm, mode='a')
118 self.observers: List[Tuple[Callable, int, Tuple, Dict[str, Any]]] = []
119 self.nsteps = 0
120 self.max_steps = 0 # to be updated in run or irun
121 self.comm = comm
123 if trajectory is not None:
124 if isinstance(trajectory, str):
125 from ase.io.trajectory import Trajectory
126 mode = "a" if append_trajectory else "w"
127 trajectory = self.closelater(Trajectory(
128 trajectory, mode=mode, master=master, comm=comm
129 ))
130 self.attach(
131 trajectory,
132 interval=loginterval,
133 atoms=self.optimizable,
134 )
136 self.trajectory = trajectory
138 def todict(self) -> Dict[str, Any]:
139 raise NotImplementedError
141 def get_number_of_steps(self):
142 return self.nsteps
144 def insert_observer(
145 self, function, position=0, interval=1, *args, **kwargs
146 ):
147 """Insert an observer.
149 This can be used for pre-processing before logging and dumping.
151 Examples
152 --------
153 >>> from ase.build import bulk
154 >>> from ase.calculators.emt import EMT
155 >>> from ase.optimize import BFGS
156 ...
157 ...
158 >>> def update_info(atoms, opt):
159 ... atoms.info["nsteps"] = opt.nsteps
160 ...
161 ...
162 >>> atoms = bulk("Cu", cubic=True) * 2
163 >>> atoms.rattle()
164 >>> atoms.calc = EMT()
165 >>> with BFGS(atoms, logfile=None, trajectory="opt.traj") as opt:
166 ... opt.insert_observer(update_info, atoms=atoms, opt=opt)
167 ... opt.run(fmax=0.05, steps=10)
168 True
169 """
170 if not isinstance(function, Callable):
171 function = function.write
172 self.observers.insert(position, (function, interval, args, kwargs))
174 def attach(self, function, interval=1, *args, **kwargs):
175 """Attach callback function.
177 If *interval > 0*, at every *interval* steps, call *function* with
178 arguments *args* and keyword arguments *kwargs*.
180 If *interval <= 0*, after step *interval*, call *function* with
181 arguments *args* and keyword arguments *kwargs*. This is
182 currently zero indexed."""
184 if hasattr(function, "set_description"):
185 d = self.todict()
186 d.update(interval=interval)
187 function.set_description(d)
188 if not isinstance(function, Callable):
189 function = function.write
190 self.observers.append((function, interval, args, kwargs))
192 def call_observers(self):
193 for function, interval, args, kwargs in self.observers:
194 call = False
195 # Call every interval iterations
196 if interval > 0:
197 if (self.nsteps % interval) == 0:
198 call = True
199 # Call only on iteration interval
200 elif interval <= 0:
201 if self.nsteps == abs(interval):
202 call = True
203 if call:
204 function(*args, **kwargs)
206 def irun(self, steps=DEFAULT_MAX_STEPS):
207 """Run dynamics algorithm as generator.
209 Parameters
210 ----------
211 steps : int, default=DEFAULT_MAX_STEPS
212 Number of dynamics steps to be run.
214 Yields
215 ------
216 converged : bool
217 True if the forces on atoms are converged.
219 Examples
220 --------
221 This method allows, e.g., to run two optimizers or MD thermostats at
222 the same time.
223 >>> opt1 = BFGS(atoms)
224 >>> opt2 = BFGS(StrainFilter(atoms)).irun()
225 >>> for _ in opt2:
226 ... opt1.run()
227 """
229 # update the maximum number of steps
230 self.max_steps = self.nsteps + steps
232 # compute the initial step
233 self.optimizable.get_forces()
235 # log the initial step
236 if self.nsteps == 0:
237 self.log()
239 # we write a trajectory file if it is None
240 if self.trajectory is None:
241 self.call_observers()
242 # We do not write on restart w/ an existing trajectory file
243 # present. This duplicates the same entry twice
244 elif len(self.trajectory) == 0:
245 self.call_observers()
247 # check convergence
248 is_converged = self.converged()
249 yield is_converged
251 # run the algorithm until converged or max_steps reached
252 while not is_converged and self.nsteps < self.max_steps:
253 # compute the next step
254 self.step()
255 self.nsteps += 1
257 # log the step
258 self.log()
259 self.call_observers()
261 # check convergence
262 is_converged = self.converged()
263 yield is_converged
265 def run(self, steps=DEFAULT_MAX_STEPS):
266 """Run dynamics algorithm.
268 This method will return when the forces on all individual
269 atoms are less than *fmax* or when the number of steps exceeds
270 *steps*.
272 Parameters
273 ----------
274 steps : int, default=DEFAULT_MAX_STEPS
275 Number of dynamics steps to be run.
277 Returns
278 -------
279 converged : bool
280 True if the forces on atoms are converged.
281 """
283 for converged in Dynamics.irun(self, steps=steps):
284 pass
285 return converged
287 def converged(self):
288 """" a dummy function as placeholder for a real criterion, e.g. in
289 Optimizer """
290 return False
292 def log(self, *args):
293 """ a dummy function as placeholder for a real logger, e.g. in
294 Optimizer """
295 return True
297 def step(self):
298 """this needs to be implemented by subclasses"""
299 raise RuntimeError("step not implemented.")
302class Optimizer(Dynamics):
303 """Base-class for all structure optimization classes."""
305 # default maxstep for all optimizers
306 defaults = {'maxstep': 0.2}
307 _deprecated = object()
309 def __init__(
310 self,
311 atoms: Atoms,
312 restart: Optional[str] = None,
313 logfile: Optional[Union[IO, str]] = None,
314 trajectory: Optional[str] = None,
315 append_trajectory: bool = False,
316 **kwargs,
317 ):
318 """
320 Parameters
321 ----------
322 atoms: :class:`~ase.Atoms`
323 The Atoms object to relax.
325 restart: str
326 Filename for restart file. Default value is *None*.
328 logfile: file object or str
329 If *logfile* is a string, a file with that name will be opened.
330 Use '-' for stdout.
332 trajectory: Trajectory object or str
333 Attach trajectory object. If *trajectory* is a string a
334 Trajectory will be constructed. Use *None* for no
335 trajectory.
337 append_trajectory: bool
338 Appended to the trajectory file instead of overwriting it.
340 kwargs : dict, optional
341 Extra arguments passed to :class:`~ase.optimize.optimize.Dynamics`.
343 """
344 super().__init__(
345 atoms=atoms,
346 logfile=logfile,
347 trajectory=trajectory,
348 append_trajectory=append_trajectory,
349 **kwargs,
350 )
352 self.restart = restart
354 self.fmax = None
356 if restart is None or not isfile(restart):
357 self.initialize()
358 else:
359 self.read()
360 self.comm.barrier()
362 def read(self):
363 raise NotImplementedError
365 def todict(self):
366 description = {
367 "type": "optimization",
368 "optimizer": self.__class__.__name__,
369 }
370 # add custom attributes from subclasses
371 for attr in ('maxstep', 'alpha', 'max_steps', 'restart',
372 'fmax'):
373 if hasattr(self, attr):
374 description.update({attr: getattr(self, attr)})
375 return description
377 def initialize(self):
378 pass
380 def irun(self, fmax=0.05, steps=DEFAULT_MAX_STEPS):
381 """Run optimizer as generator.
383 Parameters
384 ----------
385 fmax : float
386 Convergence criterion of the forces on atoms.
387 steps : int, default=DEFAULT_MAX_STEPS
388 Number of optimizer steps to be run.
390 Yields
391 ------
392 converged : bool
393 True if the forces on atoms are converged.
394 """
395 self.fmax = fmax
396 return Dynamics.irun(self, steps=steps)
398 def run(self, fmax=0.05, steps=DEFAULT_MAX_STEPS):
399 """Run optimizer.
401 Parameters
402 ----------
403 fmax : float
404 Convergence criterion of the forces on atoms.
405 steps : int, default=DEFAULT_MAX_STEPS
406 Number of optimizer steps to be run.
408 Returns
409 -------
410 converged : bool
411 True if the forces on atoms are converged.
412 """
413 self.fmax = fmax
414 return Dynamics.run(self, steps=steps)
416 def converged(self, forces=None):
417 """Did the optimization converge?"""
418 if forces is None:
419 forces = self.optimizable.get_forces()
420 return self.optimizable.converged(forces, self.fmax)
422 def log(self, forces=None):
423 if forces is None:
424 forces = self.optimizable.get_forces()
425 fmax = sqrt((forces ** 2).sum(axis=1).max())
426 e = self.optimizable.get_potential_energy()
427 T = time.localtime()
428 if self.logfile is not None:
429 name = self.__class__.__name__
430 if self.nsteps == 0:
431 args = (" " * len(name), "Step", "Time", "Energy", "fmax")
432 msg = "%s %4s %8s %15s %12s\n" % args
433 self.logfile.write(msg)
435 args = (name, self.nsteps, T[3], T[4], T[5], e, fmax)
436 msg = "%s: %3d %02d:%02d:%02d %15.6f %15.6f\n" % args
437 self.logfile.write(msg)
438 self.logfile.flush()
440 def dump(self, data):
441 from ase.io.jsonio import write_json
442 if self.comm.rank == 0 and self.restart is not None:
443 with open(self.restart, 'w') as fd:
444 write_json(fd, data)
446 def load(self):
447 from ase.io.jsonio import read_json
448 with open(self.restart) as fd:
449 try:
450 from ase.optimize import BFGS
451 if not isinstance(self, BFGS) and isinstance(
452 self.atoms, UnitCellFilter
453 ):
454 warnings.warn(
455 "WARNING: restart function is untested and may result "
456 "in unintended behavior. Namely orig_cell is not "
457 "loaded in the UnitCellFilter. Please test on your own"
458 " to ensure consistent results."
459 )
460 return read_json(fd, always_array=False)
461 except Exception as ex:
462 msg = ('Could not decode restart file as JSON. '
463 'You may need to delete the restart file '
464 f'{self.restart}')
465 raise RestartError(msg) from ex