Coverage for /builds/debichem-team/python-ase/ase/vibrations/albrecht.py: 89.82%

285 statements  

« prev     ^ index     » next       coverage.py v7.5.3, created at 2025-03-06 04:00 +0000

1import sys 

2from itertools import combinations_with_replacement 

3 

4import numpy as np 

5 

6import ase.units as u 

7from ase.parallel import paropen, parprint 

8from ase.vibrations.franck_condon import ( 

9 FranckCondonOverlap, 

10 FranckCondonRecursive, 

11) 

12from ase.vibrations.resonant_raman import ResonantRaman 

13 

14 

15class Albrecht(ResonantRaman): 

16 def __init__(self, *args, **kwargs): 

17 """ 

18 Parameters 

19 ---------- 

20 all from ResonantRaman.__init__ 

21 combinations: int 

22 Combinations to consider for multiple excitations. 

23 Default is 1, possible 2 

24 skip: int 

25 Number of first transitions to exclude. Default 0, 

26 recommended: 5 for linear molecules, 6 for other molecules 

27 nm: int 

28 Number of intermediate m levels to consider, default 20 

29 """ 

30 self.combinations = kwargs.pop('combinations', 1) 

31 self.skip = kwargs.pop('skip', 0) 

32 self.nm = kwargs.pop('nm', 20) 

33 approximation = kwargs.pop('approximation', 'Albrecht') 

34 

35 ResonantRaman.__init__(self, *args, **kwargs) 

36 

37 self.set_approximation(approximation) 

38 

39 def set_approximation(self, value): 

40 approx = value.lower() 

41 if approx in ['albrecht', 'albrecht b', 'albrecht c', 'albrecht bc']: 

42 if not self.overlap: 

43 raise ValueError('Overlaps are needed') 

44 elif approx != 'albrecht a': 

45 raise ValueError('Please use "Albrecht" or "Albrecht A/B/C/BC"') 

46 self._approx = value 

47 

48 def calculate_energies_and_modes(self): 

49 if hasattr(self, 'im_r'): 

50 return 

51 

52 ResonantRaman.calculate_energies_and_modes(self) 

53 

54 # single transitions and their occupation 

55 om_Q = self.om_Q[self.skip:] 

56 om_v = om_Q 

57 ndof = len(om_Q) 

58 n_vQ = np.eye(ndof, dtype=int) 

59 

60 l_Q = range(ndof) 

61 ind_v = list(combinations_with_replacement(l_Q, 1)) 

62 

63 if self.combinations > 1: 

64 if self.combinations != 2: 

65 raise NotImplementedError 

66 

67 for c in range(2, self.combinations + 1): 

68 ind_v += list(combinations_with_replacement(l_Q, c)) 

69 

70 nv = len(ind_v) 

71 n_vQ = np.zeros((nv, ndof), dtype=int) 

72 om_v = np.zeros((nv), dtype=float) 

73 for j, wt in enumerate(ind_v): 

74 for i in wt: 

75 n_vQ[j, i] += 1 

76 om_v = n_vQ.dot(om_Q) 

77 

78 self.ind_v = ind_v 

79 self.om_v = om_v 

80 self.n_vQ = n_vQ # how many of each 

81 self.d_vQ = np.where(n_vQ > 0, 1, 0) # do we have them ? 

82 

83 def get_energies(self): 

84 self.calculate_energies_and_modes() 

85 return self.om_v 

86 

87 def _collect_r(self, arr_ro, oshape, dtype): 

88 """Collect an array that is distributed.""" 

89 if len(self.myr) == self.ndof: # serial 

90 return arr_ro 

91 data_ro = np.zeros([self.ndof] + oshape, dtype) 

92 if len(arr_ro): 

93 data_ro[self.slize] = arr_ro 

94 self.comm.sum(data_ro) 

95 return data_ro 

96 

97 def Huang_Rhys_factors(self, forces_r): 

98 """Evaluate Huang-Rhys factors derived from forces.""" 

99 return 0.5 * self.unitless_displacements(forces_r)**2 

100 

101 def unitless_displacements(self, forces_r, mineigv=1e-12): 

102 """Evaluate unitless displacements from forces 

103 

104 Parameters 

105 ---------- 

106 forces_r: array 

107 Forces in cartesian coordinates 

108 mineigv: float 

109 Minimal Eigenvalue to consider in matrix inversion to handle 

110 numerical noise. Default 1e-12 

111 

112 Returns 

113 ------- 

114 Unitless displacements in Eigenmode coordinates 

115 """ 

116 assert len(forces_r.flat) == self.ndof 

117 

118 if not hasattr(self, 'Dm1_q'): 

119 self.eigv_q, self.eigw_rq = np.linalg.eigh( 

120 self.im_r[:, None] * self.H * self.im_r) 

121 # there might be zero or nearly zero eigenvalues 

122 self.Dm1_q = np.divide(1, self.eigv_q, 

123 out=np.zeros_like(self.eigv_q), 

124 where=np.abs(self.eigv_q) > mineigv) 

125 X_r = self.eigw_rq @ np.diag(self.Dm1_q) @ self.eigw_rq.T @ ( 

126 forces_r.flat * self.im_r) 

127 

128 d_Q = np.dot(self.modes_Qq, X_r) 

129 s = 1.e-20 / u.kg / u.C / u._hbar**2 

130 d_Q *= np.sqrt(s * self.om_Q) 

131 

132 return d_Q 

133 

134 def omegaLS(self, omega, gamma): 

135 omL = omega + 1j * gamma 

136 omS_Q = omL - self.om_Q 

137 return omL, omS_Q 

138 

139 def init_parallel_excitations(self): 

140 """Init for paralellization over excitations.""" 

141 n_p = len(self.ex0E_p) 

142 

143 # collect excited state forces 

144 exF_pr = self._collect_r(self.exF_rp, [n_p], self.ex0E_p.dtype).T 

145 

146 # select your work load 

147 myn = -(-n_p // self.comm.size) # ceil divide 

148 rank = self.comm.rank 

149 s = slice(myn * rank, myn * (rank + 1)) 

150 return n_p, range(n_p)[s], exF_pr 

151 

152 def meA(self, omega, gamma=0.1): 

153 """Evaluate Albrecht A term. 

154 

155 Returns 

156 ------- 

157 Full Albrecht A matrix element. Unit: e^2 Angstrom^2 / eV 

158 """ 

159 self.read() 

160 

161 if not hasattr(self, 'fcr'): 

162 self.fcr = FranckCondonRecursive() 

163 

164 omL = omega + 1j * gamma 

165 omS_Q = omL - self.om_Q 

166 

167 _n_p, myp, exF_pr = self.init_parallel_excitations() 

168 exF_pr = np.where(np.abs(exF_pr) > 1e-2, exF_pr, 0) 

169 

170 m_Qcc = np.zeros((self.ndof, 3, 3), dtype=complex) 

171 for p in myp: 

172 energy = self.ex0E_p[p] 

173 d_Q = self.unitless_displacements(exF_pr[p]) 

174 energy_Q = energy - self.om_Q * d_Q**2 / 2. 

175 me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj()) 

176 

177 wm_Q = np.zeros((self.ndof), dtype=complex) 

178 wp_Q = np.zeros((self.ndof), dtype=complex) 

179 for m in range(self.nm): 

180 fco_Q = self.fcr.direct0mm1(m, d_Q) 

181 e_Q = energy_Q + m * self.om_Q 

182 wm_Q += fco_Q / (e_Q - omL) 

183 wp_Q += fco_Q / (e_Q + omS_Q) 

184 m_Qcc += np.einsum('a,bc->abc', wm_Q, me_cc) 

185 m_Qcc += np.einsum('a,bc->abc', wp_Q, me_cc.conj()) 

186 self.comm.sum(m_Qcc) 

187 

188 return m_Qcc # e^2 Angstrom^2 / eV 

189 

190 def meAmult(self, omega, gamma=0.1): 

191 """Evaluate Albrecht A term. 

192 

193 Returns 

194 ------- 

195 Full Albrecht A matrix element. Unit: e^2 Angstrom^2 / eV 

196 """ 

197 self.read() 

198 

199 if not hasattr(self, 'fcr'): 

200 self.fcr = FranckCondonRecursive() 

201 

202 omL = omega + 1j * gamma 

203 omS_v = omL - self.om_v 

204 nv = len(self.om_v) 

205 om_Q = self.om_Q[self.skip:] 

206 nQ = len(om_Q) 

207 

208 # n_v: 

209 # how many FC factors are involved 

210 # nvib_ov: 

211 # delta functions to switch contributions depending on order o 

212 # ind_ov: 

213 # Q indicees 

214 # n_ov: 

215 # # of vibrational excitations 

216 n_v = self.d_vQ.sum(axis=1) # multiplicity 

217 

218 nvib_ov = np.empty((self.combinations, nv), dtype=int) 

219 om_ov = np.zeros((self.combinations, nv), dtype=float) 

220 n_ov = np.zeros((self.combinations, nv), dtype=int) 

221 d_ovQ = np.zeros((self.combinations, nv, nQ), dtype=int) 

222 for o in range(self.combinations): 

223 nvib_ov[o] = np.array(n_v == (o + 1)) 

224 for v in range(nv): 

225 try: 

226 om_ov[o, v] = om_Q[self.ind_v[v][o]] 

227 d_ovQ[o, v, self.ind_v[v][o]] = 1 

228 except IndexError: 

229 pass 

230 # XXXX change ???? 

231 n_ov[0] = self.n_vQ.max(axis=1) 

232 n_ov[1] = nvib_ov[1] 

233 

234 _n_p, myp, exF_pr = self.init_parallel_excitations() 

235 

236 m_vcc = np.zeros((nv, 3, 3), dtype=complex) 

237 for p in myp: 

238 energy = self.ex0E_p[p] 

239 d_Q = self.unitless_displacements(exF_pr[p])[self.skip:] 

240 S_Q = d_Q**2 / 2. 

241 energy_v = energy - self.d_vQ.dot(om_Q * S_Q) 

242 me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj()) 

243 

244 fco1_mQ = np.empty((self.nm, nQ), dtype=float) 

245 fco2_mQ = np.empty((self.nm, nQ), dtype=float) 

246 for m in range(self.nm): 

247 fco1_mQ[m] = self.fcr.direct0mm1(m, d_Q) 

248 fco2_mQ[m] = self.fcr.direct0mm2(m, d_Q) 

249 

250 wm_v = np.zeros((nv), dtype=complex) 

251 wp_v = np.zeros((nv), dtype=complex) 

252 for m in range(self.nm): 

253 fco1_v = np.where(n_ov[0] == 2, 

254 d_ovQ[0].dot(fco2_mQ[m]), 

255 d_ovQ[0].dot(fco1_mQ[m])) 

256 

257 em_v = energy_v + m * om_ov[0] 

258 # multiples of same kind 

259 fco_v = nvib_ov[0] * fco1_v 

260 wm_v += fco_v / (em_v - omL) 

261 wp_v += fco_v / (em_v + omS_v) 

262 if nvib_ov[1].any(): 

263 # multiples of mixed type 

264 for n in range(self.nm): 

265 fco2_v = d_ovQ[1].dot(fco1_mQ[n]) 

266 e_v = em_v + n * om_ov[1] 

267 fco_v = nvib_ov[1] * fco1_v * fco2_v 

268 wm_v += fco_v / (e_v - omL) 

269 wp_v += fco_v / (e_v + omS_v) 

270 

271 m_vcc += np.einsum('a,bc->abc', wm_v, me_cc) 

272 m_vcc += np.einsum('a,bc->abc', wp_v, me_cc.conj()) 

273 self.comm.sum(m_vcc) 

274 

275 return m_vcc # e^2 Angstrom^2 / eV 

276 

277 def meBC(self, omega, gamma=0.1, 

278 term='BC'): 

279 """Evaluate Albrecht BC term. 

280 

281 Returns 

282 ------- 

283 Full Albrecht BC matrix element. 

284 Unit: e^2 Angstrom / eV / sqrt(amu) 

285 """ 

286 self.read() 

287 

288 if not hasattr(self, 'fco'): 

289 self.fco = FranckCondonOverlap() 

290 

291 omL = omega + 1j * gamma 

292 omS_Q = omL - self.om_Q 

293 

294 # excited state forces 

295 n_p, myp, exF_pr = self.init_parallel_excitations() 

296 # derivatives after normal coordinates 

297 exdmdr_rpc = self._collect_r( 

298 self.exdmdr_rpc, [n_p, 3], self.ex0m_pc.dtype) 

299 dmdq_qpc = (exdmdr_rpc.T * self.im_r).T # unit e / sqrt(amu) 

300 dmdQ_Qpc = np.dot(dmdq_qpc.T, self.modes_Qq.T).T # unit e / sqrt(amu) 

301 

302 me_Qcc = np.zeros((self.ndof, 3, 3), dtype=complex) 

303 for p in myp: 

304 energy = self.ex0E_p[p] 

305 S_Q = self.Huang_Rhys_factors(exF_pr[p]) 

306 # relaxed excited state energy 

307 # # n_vQ = np.where(self.n_vQ > 0, 1, 0) 

308 # # energy_v = energy - n_vQ.dot(self.om_Q * S_Q) 

309 energy_Q = energy - self.om_Q * S_Q 

310 

311 # # me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj()) 

312 m_c = self.ex0m_pc[p] # e Angstrom 

313 dmdQ_Qc = dmdQ_Qpc[:, p] # e / sqrt(amu) 

314 

315 wBLS_Q = np.zeros((self.ndof), dtype=complex) 

316 wBSL_Q = np.zeros((self.ndof), dtype=complex) 

317 wCLS_Q = np.zeros((self.ndof), dtype=complex) 

318 wCSL_Q = np.zeros((self.ndof), dtype=complex) 

319 for m in range(self.nm): 

320 f0mmQ1_Q = (self.fco.directT0(m, S_Q) + 

321 np.sqrt(2) * self.fco.direct0mm2(m, S_Q)) 

322 f0Qmm1_Q = self.fco.direct(1, m, S_Q) 

323 

324 em_Q = energy_Q + m * self.om_Q 

325 wBLS_Q += f0mmQ1_Q / (em_Q - omL) 

326 wBSL_Q += f0Qmm1_Q / (em_Q - omL) 

327 wCLS_Q += f0mmQ1_Q / (em_Q + omS_Q) 

328 wCSL_Q += f0Qmm1_Q / (em_Q + omS_Q) 

329 

330 # unit e^2 Angstrom / sqrt(amu) 

331 mdmdQ_Qcc = np.einsum('a,bc->bac', m_c, dmdQ_Qc.conj()) 

332 dmdQm_Qcc = np.einsum('ab,c->abc', dmdQ_Qc, m_c.conj()) 

333 if 'B' in term: 

334 me_Qcc += np.multiply(wBLS_Q, mdmdQ_Qcc.T).T 

335 me_Qcc += np.multiply(wBSL_Q, dmdQm_Qcc.T).T 

336 if 'C' in term: 

337 me_Qcc += np.multiply(wCLS_Q, mdmdQ_Qcc.T).T 

338 me_Qcc += np.multiply(wCSL_Q, dmdQm_Qcc.T).T 

339 

340 self.comm.sum(me_Qcc) 

341 return me_Qcc # unit e^2 Angstrom / eV / sqrt(amu) 

342 

343 def electronic_me_Qcc(self, omega, gamma): 

344 self.calculate_energies_and_modes() 

345 

346 approx = self.approximation.lower() 

347 assert self.combinations == 1 

348 Vel_Qcc = np.zeros((len(self.om_Q), 3, 3), dtype=complex) 

349 if approx == 'albrecht a' or approx == 'albrecht': 

350 Vel_Qcc += self.meA(omega, gamma) # e^2 Angstrom^2 / eV 

351 # divide through pre-factor 

352 with np.errstate(divide='ignore'): 

353 Vel_Qcc *= np.where(self.vib01_Q > 0, 

354 1. / self.vib01_Q, 0)[:, None, None] 

355 # -> e^2 Angstrom / eV / sqrt(amu) 

356 if approx == 'albrecht bc' or approx == 'albrecht': 

357 Vel_Qcc += self.meBC(omega, gamma) # e^2 Angstrom / eV / sqrt(amu) 

358 if approx == 'albrecht b': 

359 Vel_Qcc += self.meBC(omega, gamma, term='B') 

360 if approx == 'albrecht c': 

361 Vel_Qcc = self.meBC(omega, gamma, term='C') 

362 

363 Vel_Qcc *= u.Hartree * u.Bohr # e^2 Angstrom^2 / eV -> Angstrom^3 

364 

365 return Vel_Qcc # Angstrom^2 / sqrt(amu) 

366 

367 def me_Qcc(self, omega, gamma): 

368 """Full matrix element""" 

369 self.read() 

370 approx = self.approximation.lower() 

371 nv = len(self.om_v) 

372 V_vcc = np.zeros((nv, 3, 3), dtype=complex) 

373 if approx == 'albrecht a' or approx == 'albrecht': 

374 if self.combinations == 1: 

375 # e^2 Angstrom^2 / eV 

376 V_vcc += self.meA(omega, gamma)[self.skip:] 

377 else: 

378 V_vcc += self.meAmult(omega, gamma) 

379 if approx == 'albrecht bc' or approx == 'albrecht': 

380 if self.combinations == 1: 

381 vel_vcc = self.meBC(omega, gamma) 

382 V_vcc += vel_vcc * self.vib01_Q[:, None, None] 

383 else: 

384 vel_vcc = self.meBCmult(omega, gamma) 

385 V_vcc = 0 

386 elif approx == 'albrecht b': 

387 assert self.combinations == 1 

388 vel_vcc = self.meBC(omega, gamma, term='B') 

389 V_vcc = vel_vcc * self.vib01_Q[:, None, None] 

390 if approx == 'albrecht c': 

391 assert self.combinations == 1 

392 vel_vcc = self.meBC(omega, gamma, term='C') 

393 V_vcc = vel_vcc * self.vib01_Q[:, None, None] 

394 

395 return V_vcc # e^2 Angstrom^2 / eV 

396 

397 def summary(self, omega=0, gamma=0, 

398 method='standard', direction='central', 

399 log=sys.stdout): 

400 """Print summary for given omega [eV]""" 

401 if self.combinations > 1: 

402 return self.extended_summary() 

403 

404 om_v = self.get_energies() 

405 intensities = self.get_absolute_intensities(omega, gamma)[self.skip:] 

406 

407 if isinstance(log, str): 

408 log = paropen(log, 'a') 

409 

410 parprint('-------------------------------------', file=log) 

411 parprint(' excitation at ' + str(omega) + ' eV', file=log) 

412 parprint(' gamma ' + str(gamma) + ' eV', file=log) 

413 parprint(' approximation:', self.approximation, file=log) 

414 parprint(' Mode Frequency Intensity', file=log) 

415 parprint(' # meV cm^-1 [A^4/amu]', file=log) 

416 parprint('-------------------------------------', file=log) 

417 for n, e in enumerate(om_v): 

418 if e.imag != 0: 

419 c = 'i' 

420 e = e.imag 

421 else: 

422 c = ' ' 

423 e = e.real 

424 parprint('%3d %6.1f %7.1f%s %9.1f' % 

425 (n, 1000 * e, e / u.invcm, c, intensities[n]), 

426 file=log) 

427 parprint('-------------------------------------', file=log) 

428 parprint('Zero-point energy: %.3f eV' % 

429 self.vibrations.get_zero_point_energy(), 

430 file=log) 

431 

432 def extended_summary(self, omega=0, gamma=0, 

433 method='standard', direction='central', 

434 log=sys.stdout): 

435 """Print summary for given omega [eV]""" 

436 self.read(method, direction) 

437 om_v = self.get_energies() 

438 intens_v = self.intensity(omega, gamma) 

439 

440 if isinstance(log, str): 

441 log = paropen(log, 'a') 

442 

443 parprint('-------------------------------------', file=log) 

444 parprint(' excitation at ' + str(omega) + ' eV', file=log) 

445 parprint(' gamma ' + str(gamma) + ' eV', file=log) 

446 parprint(' approximation:', self.approximation, file=log) 

447 parprint(' observation:', self.observation, file=log) 

448 parprint(' Mode Frequency Intensity', file=log) 

449 parprint(' # meV cm^-1 [e^4A^4/eV^2]', file=log) 

450 parprint('-------------------------------------', file=log) 

451 for v, e in enumerate(om_v): 

452 parprint(self.ind_v[v], '{:6.1f} {:7.1f} {:9.1f}'.format( 

453 1000 * e, e / u.invcm, 1e9 * intens_v[v]), 

454 file=log) 

455 parprint('-------------------------------------', file=log) 

456 parprint('Zero-point energy: %.3f eV' % 

457 self.vibrations.get_zero_point_energy(), 

458 file=log)