Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1import numpy as np
2from collections import namedtuple
3from ase.geometry import find_mic
6def fit_raw(energies, forces, positions, cell=None, pbc=None):
7 """Calculates parameters for fitting images to a band, as for
8 a NEB plot."""
9 energies = np.array(energies) - energies[0]
10 n_images = len(energies)
11 fit_energies = np.empty((n_images - 1) * 20 + 1)
12 fit_path = np.empty((n_images - 1) * 20 + 1)
14 path = [0]
15 for i in range(n_images - 1):
16 dR = positions[i + 1] - positions[i]
17 if cell is not None and pbc is not None:
18 dR, _ = find_mic(dR, cell, pbc)
19 path.append(path[i] + np.sqrt((dR**2).sum()))
21 lines = [] # tangent lines
22 lastslope = None
23 for i in range(n_images):
24 if i == 0:
25 direction = positions[i + 1] - positions[i]
26 dpath = 0.5 * path[1]
27 elif i == n_images - 1:
28 direction = positions[-1] - positions[-2]
29 dpath = 0.5 * (path[-1] - path[-2])
30 else:
31 direction = positions[i + 1] - positions[i - 1]
32 dpath = 0.25 * (path[i + 1] - path[i - 1])
34 direction /= np.linalg.norm(direction)
35 slope = -(forces[i] * direction).sum()
36 x = np.linspace(path[i] - dpath, path[i] + dpath, 3)
37 y = energies[i] + slope * (x - path[i])
38 lines.append((x, y))
40 if i > 0:
41 s0 = path[i - 1]
42 s1 = path[i]
43 x = np.linspace(s0, s1, 20, endpoint=False)
44 c = np.linalg.solve(np.array([(1, s0, s0**2, s0**3),
45 (1, s1, s1**2, s1**3),
46 (0, 1, 2 * s0, 3 * s0**2),
47 (0, 1, 2 * s1, 3 * s1**2)]),
48 np.array([energies[i - 1], energies[i],
49 lastslope, slope]))
50 y = c[0] + x * (c[1] + x * (c[2] + x * c[3]))
51 fit_path[(i - 1) * 20:i * 20] = x
52 fit_energies[(i - 1) * 20:i * 20] = y
54 lastslope = slope
56 fit_path[-1] = path[-1]
57 fit_energies[-1] = energies[-1]
58 return ForceFit(path, energies, fit_path, fit_energies, lines)
61class ForceFit(namedtuple('ForceFit', ['path', 'energies', 'fit_path',
62 'fit_energies', 'lines'])):
63 """Data container to hold fitting parameters for force curves."""
65 def plot(self, ax=None):
66 import matplotlib.pyplot as plt
67 if ax is None:
68 ax = plt.gca()
70 ax.plot(self.path, self.energies, 'o')
71 for x, y in self.lines:
72 ax.plot(x, y, '-g')
73 ax.plot(self.fit_path, self.fit_energies, 'k-')
74 ax.set_xlabel(r'path [Å]')
75 ax.set_ylabel('energy [eV]')
76 Ef = max(self.energies) - self.energies[0]
77 Er = max(self.energies) - self.energies[-1]
78 dE = self.energies[-1] - self.energies[0]
79 ax.set_title(r'$E_\mathrm{{f}} \approx$ {:.3f} eV; '
80 r'$E_\mathrm{{r}} \approx$ {:.3f} eV; '
81 r'$\Delta E$ = {:.3f} eV'.format(Ef, Er, dE))
82 return ax
85def fit_images(images):
86 """Fits a series of images with a smoothed line for producing a standard
87 NEB plot. Returns a `ForceFit` data structure; the plot can be produced
88 by calling the `plot` method of `ForceFit`."""
89 R = [atoms.positions for atoms in images]
90 E = [atoms.get_potential_energy() for atoms in images]
91 F = [atoms.get_forces() for atoms in images] # XXX force consistent???
92 A = images[0].cell
93 pbc = images[0].pbc
94 return fit_raw(E, F, R, A, pbc)
97def force_curve(images, ax=None):
98 """Plot energies and forces as a function of accumulated displacements.
100 This is for testing whether a calculator's forces are consistent with
101 the energies on a set of geometries where energies and forces are
102 available."""
104 if ax is None:
105 import matplotlib.pyplot as plt
106 ax = plt.gca()
108 nim = len(images)
110 accumulated_distances = []
111 accumulated_distance = 0.0
113 # XXX force_consistent=True will work with some calculators,
114 # but won't work if images were loaded from a trajectory.
115 energies = [atoms.get_potential_energy()
116 for atoms in images]
118 for i in range(nim):
119 atoms = images[i]
120 f_ac = atoms.get_forces()
122 if i < nim - 1:
123 rightpos = images[i + 1].positions
124 else:
125 rightpos = atoms.positions
127 if i > 0:
128 leftpos = images[i - 1].positions
129 else:
130 leftpos = atoms.positions
132 disp_ac, _ = find_mic(rightpos - leftpos, cell=atoms.cell,
133 pbc=atoms.pbc)
135 def total_displacement(disp):
136 disp_a = (disp**2).sum(axis=1)**.5
137 return sum(disp_a)
139 dE_fdotr = -0.5 * np.vdot(f_ac.ravel(), disp_ac.ravel())
141 linescale = 0.45
143 disp = 0.5 * total_displacement(disp_ac)
145 if i == 0 or i == nim - 1:
146 disp *= 2
147 dE_fdotr *= 2
149 x1 = accumulated_distance - disp * linescale
150 x2 = accumulated_distance + disp * linescale
151 y1 = energies[i] - dE_fdotr * linescale
152 y2 = energies[i] + dE_fdotr * linescale
154 ax.plot([x1, x2], [y1, y2], 'b-')
155 ax.plot(accumulated_distance, energies[i], 'bo')
156 ax.set_ylabel('Energy [eV]')
157 ax.set_xlabel('Accumulative distance [Å]')
158 accumulated_distances.append(accumulated_distance)
159 accumulated_distance += total_displacement(rightpos - atoms.positions)
161 ax.plot(accumulated_distances, energies, ':', zorder=-1, color='k')
162 return ax
165def plotfromfile(*fnames):
166 from ase.io import read
167 nplots = len(fnames)
169 for i, fname in enumerate(fnames):
170 images = read(fname, ':')
171 import matplotlib.pyplot as plt
172 plt.subplot(nplots, 1, 1 + i)
173 force_curve(images)
174 plt.show()
177if __name__ == '__main__':
178 import sys
179 fnames = sys.argv[1:]
180 plotfromfile(*fnames)