Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# flake8: noqa
2import time
4import numpy as np
6from ase.transport.tools import dagger
7from ase.transport.selfenergy import LeadSelfEnergy
8from ase.transport.greenfunction import GreenFunction
9from ase.parallel import world
12class STM:
13 def __init__(self, h1, s1, h2, s2 ,h10, s10, h20, s20, eta1, eta2, w=0.5, pdos=[], logfile = None):
14 """XXX
16 1. Tip
17 2. Surface
19 h1: ndarray
20 Hamiltonian and overlap matrix for the isolated tip
21 calculation. Note, h1 should contain (at least) one
22 principal layer.
24 h2: ndarray
25 Same as h1 but for the surface.
27 h10: ndarray
28 periodic part of the tip. must include two and only
29 two principal layers.
31 h20: ndarray
32 same as h10, but for the surface
34 The s* are the corresponding overlap matrices. eta1, and eta
35 2 are (finite) infinitesimals. """
37 self.pl1 = len(h10) // 2 #principal layer size for the tip
38 self.pl2 = len(h20) // 2 #principal layer size for the surface
39 self.h1 = h1
40 self.s1 = s1
41 self.h2 = h2
42 self.s2 = s2
43 self.h10 = h10
44 self.s10 = s10
45 self.h20 = h20
46 self.s20 = s20
47 self.eta1 = eta1
48 self.eta2 = eta2
49 self.w = w #asymmetry of the applied bias (0.5=>symmetric)
50 self.pdos = []
51 self.log = logfile
53 def initialize(self, energies, bias=0):
54 """
55 energies: list of energies
56 for which the transmission function should be evaluated.
57 bias.
58 Will precalculate the surface greenfunctions of the tip and
59 surface.
60 """
61 self.bias = bias
62 self.energies = energies
63 nenergies = len(energies)
64 pl1, pl2 = self.pl1, self.pl2
65 nbf1, nbf2 = len(self.h1), len(self.h2)
67 #periodic part of the tip
68 hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
69 hs1_dij = self.h10[:pl1, pl1:2*pl1], self.s10[:pl1, pl1:2*pl1]
70 #coupling between per. and non. per part of the tip
71 h1_im = np.zeros((pl1, nbf1), complex)
72 s1_im = np.zeros((pl1, nbf1), complex)
73 h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
74 hs1_dim = [h1_im, s1_im]
76 #periodic part the surface
77 hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
78 hs2_dij = self.h20[pl2:2*pl2, :pl2], self.s20[pl2:2*pl2, :pl2]
79 #coupling between per. and non. per part of the surface
80 h2_im = np.zeros((pl2, nbf2), complex)
81 s2_im = np.zeros((pl2, nbf2), complex)
82 h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
83 hs2_dim = [h2_im, s2_im]
85 #tip and surface greenfunction
86 self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
87 self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
88 self.greenfunction1 = GreenFunction(self.h1-self.bias*self.w*self.s1, self.s1,
89 [self.selfenergy1], self.eta1)
90 self.greenfunction2 = GreenFunction(self.h2-self.bias*(self.w-1)*self.s2, self.s2,
91 [self.selfenergy2], self.eta2)
93 #Shift the bands due to the bias.
94 bias_shift1 = -bias * self.w
95 bias_shift2 = -bias * (self.w - 1)
96 self.selfenergy1.set_bias(bias_shift1)
97 self.selfenergy2.set_bias(bias_shift2)
99 #tip and surface greenfunction matrices.
100 nbf1_small = nbf1 #XXX Change this for efficiency in the future
101 nbf2_small = nbf2 #XXX -||-
102 coupling_list1 = list(range(nbf1_small))# XXX -||-
103 coupling_list2 = list(range(nbf2_small))# XXX -||-
104 self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
105 self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)
107 for e, energy in enumerate(self.energies):
108 if self.log != None: # and world.rank == 0:
109 T = time.localtime()
110 self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
111 '%d, %d, %02f\n' % (world.rank, e, energy))
112 gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
113 gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
115 gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
116 gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
118 self.gft1_emm[e] = gft1_mm
119 self.gft2_emm[e] = gft2_mm
121 if self.log != None and world.rank == 0:
122 self.log.flush()
124 def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
125 """XXX
127 v_12:
128 coupling between tip and surface
129 v_11_2:
130 correction to "on-site" tip elements due to the
131 surface (eq.16). Is only included to first order.
132 v_22_1:
133 corretion to "on-site" surface elements due to he
134 tip (eq.17). Is only included to first order.
135 """
137 dim0 = v_12.shape[0]
138 dim1 = v_12.shape[1]
140 nenergies = len(self.energies)
141 T_e = np.empty(nenergies,float)
142 v_21 = dagger(v_12)
143 for e, energy in enumerate(self.energies):
144 gft1 = self.gft1_emm[e]
145 if v_11_2!=None:
146 gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
147 gf1 += gft1 #eq. 16
148 else:
149 gf1 = gft1
151 gft2 = self.gft2_emm[e]
152 if v_22_1!=None:
153 gf2 = np.dot(v_22_1,np.dot(gft2, v_22_1))
154 gf2 += gft2 #eq. 17
155 else:
156 gf2 = gft2
158 a1 = (gf1 - dagger(gf1))
159 a2 = (gf2 - dagger(gf2))
160 self.v_12 = v_12
161 self.a2 = a2
162 self.v_21 = v_21
163 self.a1 = a1
164 v12_a2 = np.dot(v_12, a2[:dim1])
165 v21_a1 = np.dot(v_21, a1[-dim0:])
166 self.v12_a2 = v12_a2
167 self.v21_a1 = v21_a1
168 T = -np.trace(np.dot(v12_a2[:,:dim1], v21_a1[:,-dim0:])) #eq. 11
169 assert abs(T.imag).max() < 1e-14
170 T_e[e] = T.real
171 self.T_e = T_e
172 return T_e
175 def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
176 """Very simple function to calculate the current.
178 Asummes zero temperature.
180 bias: type? XXX
181 bias voltage (V)
183 v_12: XXX
184 coupling between tip and surface.
186 v_11_2:
187 correction to onsite elements of the tip
188 due to the potential of the surface.
189 v_22_1:
190 correction to onsite elements of the surface
191 due to the potential of the tip.
192 """
193 energies = self.energies
194 T_e = self.get_transmission(v_12, v_11_2, v_22_1)
195 bias_window = sorted(-np.array([bias * self.w, bias * (self.w - 1)]))
196 self.bias_window = bias_window
197 #print 'bias window', np.around(bias_window,3)
198 #print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
199 #print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
200 i1 = sum(energies < bias_window[0])
201 i2 = sum(energies < bias_window[1])
202 step = 1
203 if i2 < i1:
204 step = -1
206 return np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])