Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1from typing import Dict, List, Tuple, Union, Optional
2from numbers import Real
3from collections import namedtuple
4import re
5from string import digits
6import numpy as np
7from ase import Atoms
8from ase.units import Angstrom, Bohr, nm
11# split on newlines or semicolons
12_re_linesplit = re.compile(r'\n|;')
13# split definitions on whitespace or on "=" (possibly also with whitespace)
14_re_defs = re.compile(r'\s*=\s*|\s+')
17_ZMatrixRow = namedtuple(
18 'ZMatrixRow', 'ind1 dist ind2 a_bend ind3 a_dihedral',
19)
22class _ZMatrixToAtoms:
23 known_units = dict(
24 distance={'angstrom': Angstrom, 'bohr': Bohr, 'au': Bohr, 'nm': nm},
25 angle={'radians': 1., 'degrees': np.pi / 180},
26 )
28 def __init__(self, dconv: Union[str, Real], aconv: Union[str, Real],
29 defs: Optional[Union[Dict[str, float],
30 str, List[str]]] = None) -> None:
31 self.dconv = self.get_units('distance', dconv) # type: float
32 self.aconv = self.get_units('angle', aconv) # type: float
33 self.set_defs(defs)
34 self.name_to_index: Optional[Dict[str, int]] = dict()
35 self.symbols = [] # type: List[str]
36 self.positions = [] # type: List[Tuple[float, float, float]]
38 @property
39 def nrows(self):
40 return len(self.symbols)
42 def get_units(self, kind: str, value: Union[str, Real]) -> float:
43 if isinstance(value, Real):
44 return float(value)
45 out = self.known_units[kind].get(value.lower())
46 if out is None:
47 raise ValueError("Unknown {} units: {}"
48 .format(kind, value))
49 return out
51 def set_defs(self, defs: Union[Dict[str, float], str,
52 List[str], None]) -> None:
53 self.defs = dict() # type: Dict[str, float]
54 if defs is None:
55 return
57 if isinstance(defs, dict):
58 self.defs.update(**defs)
59 return
61 if isinstance(defs, str):
62 defs = _re_linesplit.split(defs.strip())
64 for row in defs:
65 key, val = _re_defs.split(row)
66 self.defs[key] = self.get_var(val)
68 def get_var(self, val: str) -> float:
69 try:
70 return float(val)
71 except ValueError as e:
72 val_out = self.defs.get(val.lstrip('+-'))
73 if val_out is None:
74 raise ValueError('Invalid value encountered in Z-matrix: {}'
75 .format(val)) from e
76 return val_out * (-1 if val.startswith('-') else 1)
78 def get_index(self, name: str) -> int:
79 """Find index for a given atom name"""
80 try:
81 return int(name) - 1
82 except ValueError as e:
83 if self.name_to_index is None or name not in self.name_to_index:
84 raise ValueError('Failed to determine index for name "{}"'
85 .format(name)) from e
86 return self.name_to_index[name]
88 def set_index(self, name: str) -> None:
89 """Assign index to a given atom name for name -> index lookup"""
90 if self.name_to_index is None:
91 return
93 if name in self.name_to_index:
94 # "name" has been encountered before, so name_to_index is no
95 # longer meaningful. Destroy the map.
96 self.name_to_index = None
97 return
99 self.name_to_index[name] = self.nrows
101 def validate_indices(self, *indices: int) -> None:
102 """Raises an error if indices in a Z-matrix row are invalid."""
103 if any(np.array(indices) >= self.nrows):
104 raise ValueError('An invalid Z-matrix was provided! Row {} refers '
105 'to atom indices {}, at least one of which '
106 "hasn't been defined yet!"
107 .format(self.nrows, indices))
109 if len(indices) != len(set(indices)):
110 raise ValueError('An atom index has been used more than once a '
111 'row of the Z-matrix! Row numbers {}, '
112 'referred indices: {}'
113 .format(self.nrows, indices))
115 def parse_row(self, row: str) -> Tuple[
116 str, Union[_ZMatrixRow, Tuple[float, float, float]],
117 ]:
118 tokens = row.split()
119 name = tokens[0]
120 self.set_index(name)
121 if len(tokens) == 1:
122 assert self.nrows == 0
123 return name, np.zeros(3, dtype=float)
125 ind1 = self.get_index(tokens[1])
126 if ind1 == -1:
127 assert len(tokens) == 5
128 return name, np.array(list(map(self.get_var, tokens[2:])),
129 dtype=float)
131 dist = self.dconv * self.get_var(tokens[2])
133 if len(tokens) == 3:
134 assert self.nrows == 1
135 self.validate_indices(ind1)
136 return name, np.array([dist, 0, 0], dtype=float)
138 ind2 = self.get_index(tokens[3])
139 a_bend = self.aconv * self.get_var(tokens[4])
141 if len(tokens) == 5:
142 assert self.nrows == 2
143 self.validate_indices(ind1, ind2)
144 return name, _ZMatrixRow(ind1, dist, ind2, a_bend, None, None)
146 ind3 = self.get_index(tokens[5])
147 a_dihedral = self.aconv * self.get_var(tokens[6])
148 self.validate_indices(ind1, ind2, ind3)
149 return name, _ZMatrixRow(ind1, dist, ind2, a_bend, ind3,
150 a_dihedral)
152 def add_atom(self, name: str, pos: Tuple[float, float, float]) -> None:
153 """Sets the symbol and position of an atom."""
154 self.symbols.append(
155 ''.join([c for c in name if c not in digits]).capitalize()
156 )
157 self.positions.append(pos)
159 def add_row(self, row: str) -> None:
160 name, zrow = self.parse_row(row)
162 if not isinstance(zrow, _ZMatrixRow):
163 self.add_atom(name, zrow)
164 return
166 if zrow.ind3 is None:
167 # This is the third atom, so only a bond distance and an angle
168 # have been provided.
169 pos = self.positions[zrow.ind1].copy()
170 pos[0] += zrow.dist * np.cos(zrow.a_bend) * (zrow.ind2 - zrow.ind1)
171 pos[1] += zrow.dist * np.sin(zrow.a_bend)
172 self.add_atom(name, pos)
173 return
175 # ax1 is the dihedral axis, which is defined by the bond vector
176 # between the two inner atoms in the dihedral, ind1 and ind2
177 ax1 = self.positions[zrow.ind2] - self.positions[zrow.ind1]
178 ax1 /= np.linalg.norm(ax1)
180 # ax2 lies within the 1-2-3 plane, and it is perpendicular
181 # to the dihedral axis
182 ax2 = self.positions[zrow.ind2] - self.positions[zrow.ind3]
183 ax2 -= ax1 * (ax2 @ ax1)
184 ax2 /= np.linalg.norm(ax2)
186 # ax3 is a vector that forms the appropriate dihedral angle, though
187 # the bending angle is 90 degrees, rather than a_bend. It is formed
188 # from a linear combination of ax2 and (ax2 x ax1)
189 ax3 = (ax2 * np.cos(zrow.a_dihedral)
190 + np.cross(ax2, ax1) * np.sin(zrow.a_dihedral))
192 # The final position vector is a linear combination of ax1 and ax3.
193 pos = ax1 * np.cos(zrow.a_bend) - ax3 * np.sin(zrow.a_bend)
194 pos *= zrow.dist / np.linalg.norm(pos)
195 pos += self.positions[zrow.ind1]
196 self.add_atom(name, pos)
198 def to_atoms(self) -> Atoms:
199 return Atoms(self.symbols, self.positions)
202def parse_zmatrix(zmat: Union[str, List[str]],
203 distance_units: Union[str, Real] = 'angstrom',
204 angle_units: Union[str, Real] = 'degrees',
205 defs: Optional[Union[Dict[str, float], str,
206 List[str]]] = None) -> Atoms:
207 """Converts a Z-matrix into an Atoms object.
209 Parameters:
211 zmat: Iterable or str
212 The Z-matrix to be parsed. Iteration over `zmat` should yield the rows
213 of the Z-matrix. If `zmat` is a str, it will be automatically split
214 into a list at newlines.
215 distance_units: str or float, optional
216 The units of distance in the provided Z-matrix.
217 Defaults to Angstrom.
218 angle_units: str or float, optional
219 The units for angles in the provided Z-matrix.
220 Defaults to degrees.
221 defs: dict or str, optional
222 If `zmat` contains symbols for bond distances, bending angles, and/or
223 dihedral angles instead of numeric values, then the definition of
224 those symbols should be passed to this function using this keyword
225 argument.
226 Note: The symbol definitions are typically printed adjacent to the
227 Z-matrix itself, but this function will not automatically separate
228 the symbol definitions from the Z-matrix.
230 Returns:
232 atoms: Atoms object
233 """
234 zmatrix = _ZMatrixToAtoms(distance_units, angle_units, defs=defs)
236 # zmat should be a list containing the rows of the z-matrix.
237 # for convenience, allow block strings and split at newlines.
238 if isinstance(zmat, str):
239 zmat = _re_linesplit.split(zmat.strip())
241 for row in zmat:
242 zmatrix.add_row(row)
244 return zmatrix.to_atoms()