Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# Copyright (C) 2010, Jesper Friis
2# (see accompanying license files for details).
4"""Utility tools for atoms/geometry manipulations.
5 - convenient creation of slabs and interfaces of
6different orientations.
7 - detection of duplicate atoms / atoms within cutoff radius
8"""
10import itertools
11import numpy as np
12from ase.geometry import complete_cell
13from ase.geometry.minkowski_reduction import minkowski_reduce
14from ase.utils import pbc2pbc
15from ase.cell import Cell
18def translate_pretty(fractional, pbc):
19 """Translates atoms such that fractional positions are minimized."""
21 for i in range(3):
22 if not pbc[i]:
23 continue
25 indices = np.argsort(fractional[:, i])
26 sp = fractional[indices, i]
28 widths = (np.roll(sp, 1) - sp) % 1.0
29 fractional[:, i] -= sp[np.argmin(widths)]
30 fractional[:, i] %= 1.0
31 return fractional
34def wrap_positions(positions, cell, pbc=True, center=(0.5, 0.5, 0.5),
35 pretty_translation=False, eps=1e-7):
36 """Wrap positions to unit cell.
38 Returns positions changed by a multiple of the unit cell vectors to
39 fit inside the space spanned by these vectors. See also the
40 :meth:`ase.Atoms.wrap` method.
42 Parameters:
44 positions: float ndarray of shape (n, 3)
45 Positions of the atoms
46 cell: float ndarray of shape (3, 3)
47 Unit cell vectors.
48 pbc: one or 3 bool
49 For each axis in the unit cell decides whether the positions
50 will be moved along this axis.
51 center: three float
52 The positons in fractional coordinates that the new positions
53 will be nearest possible to.
54 pretty_translation: bool
55 Translates atoms such that fractional coordinates are minimized.
56 eps: float
57 Small number to prevent slightly negative coordinates from being
58 wrapped.
60 Example:
62 >>> from ase.geometry import wrap_positions
63 >>> wrap_positions([[-0.1, 1.01, -0.5]],
64 ... [[1, 0, 0], [0, 1, 0], [0, 0, 4]],
65 ... pbc=[1, 1, 0])
66 array([[ 0.9 , 0.01, -0.5 ]])
67 """
69 if not hasattr(center, '__len__'):
70 center = (center,) * 3
72 pbc = pbc2pbc(pbc)
73 shift = np.asarray(center) - 0.5 - eps
75 # Don't change coordinates when pbc is False
76 shift[np.logical_not(pbc)] = 0.0
78 assert np.asarray(cell)[np.asarray(pbc)].any(axis=1).all(), (cell, pbc)
80 cell = complete_cell(cell)
81 fractional = np.linalg.solve(cell.T,
82 np.asarray(positions).T).T - shift
84 if pretty_translation:
85 fractional = translate_pretty(fractional, pbc)
86 shift = np.asarray(center) - 0.5
87 shift[np.logical_not(pbc)] = 0.0
88 fractional += shift
89 else:
90 for i, periodic in enumerate(pbc):
91 if periodic:
92 fractional[:, i] %= 1.0
93 fractional[:, i] += shift[i]
95 return np.dot(fractional, cell)
98def get_layers(atoms, miller, tolerance=0.001):
99 """Returns two arrays describing which layer each atom belongs
100 to and the distance between the layers and origo.
102 Parameters:
104 miller: 3 integers
105 The Miller indices of the planes. Actually, any direction
106 in reciprocal space works, so if a and b are two float
107 vectors spanning an atomic plane, you can get all layers
108 parallel to this with miller=np.cross(a,b).
109 tolerance: float
110 The maximum distance in Angstrom along the plane normal for
111 counting two atoms as belonging to the same plane.
113 Returns:
115 tags: array of integres
116 Array of layer indices for each atom.
117 levels: array of floats
118 Array of distances in Angstrom from each layer to origo.
120 Example:
122 >>> import numpy as np
123 >>> from ase.spacegroup import crystal
124 >>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
125 >>> np.round(atoms.positions, decimals=5)
126 array([[ 0. , 0. , 0. ],
127 [ 0. , 2.025, 2.025],
128 [ 2.025, 0. , 2.025],
129 [ 2.025, 2.025, 0. ]])
130 >>> get_layers(atoms, (0,0,1)) # doctest: +ELLIPSIS
131 (array([0, 1, 1, 0]...), array([ 0. , 2.025]))
132 """
133 miller = np.asarray(miller)
135 metric = np.dot(atoms.cell, atoms.cell.T)
136 c = np.linalg.solve(metric.T, miller.T).T
137 miller_norm = np.sqrt(np.dot(c, miller))
138 d = np.dot(atoms.get_scaled_positions(), miller) / miller_norm
140 keys = np.argsort(d)
141 ikeys = np.argsort(keys)
142 mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
143 tags = np.cumsum(mask)[ikeys]
144 if tags.min() == 1:
145 tags -= 1
147 levels = d[keys][mask]
148 return tags, levels
151def naive_find_mic(v, cell):
152 """Finds the minimum-image representation of vector(s) v.
153 Safe to use for (pbc.all() and (norm(v_mic) < 0.5 * min(cell.lengths()))).
154 Can otherwise fail for non-orthorhombic cells.
155 Described in:
156 W. Smith, "The Minimum Image Convention in Non-Cubic MD Cells", 1989,
157 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1696."""
158 f = Cell(cell).scaled_positions(v)
159 f -= np.floor(f + 0.5)
160 vmin = f @ cell
161 vlen = np.linalg.norm(vmin, axis=1)
162 return vmin, vlen
165def general_find_mic(v, cell, pbc=True):
166 """Finds the minimum-image representation of vector(s) v. Using the
167 Minkowski reduction the algorithm is relatively slow but safe for any cell.
168 """
170 cell = complete_cell(cell)
171 rcell, _ = minkowski_reduce(cell, pbc=pbc)
172 positions = wrap_positions(v, rcell, pbc=pbc, eps=0)
174 # In a Minkowski-reduced cell we only need to test nearest neighbors,
175 # or "Voronoi-relevant" vectors. These are a subset of combinations of
176 # [-1, 0, 1] of the reduced cell vectors.
178 # Define ranges [-1, 0, 1] for periodic directions and [0] for aperiodic
179 # directions.
180 ranges = [np.arange(-1 * p, p + 1) for p in pbc]
182 # Get Voronoi-relevant vectors.
183 # Pre-pend (0, 0, 0) to resolve issue #772
184 hkls = np.array([(0, 0, 0)] + list(itertools.product(*ranges)))
185 vrvecs = hkls @ rcell
187 # Map positions into neighbouring cells.
188 x = positions + vrvecs[:, None]
190 # Find minimum images
191 lengths = np.linalg.norm(x, axis=2)
192 indices = np.argmin(lengths, axis=0)
193 vmin = x[indices, np.arange(len(positions)), :]
194 vlen = lengths[indices, np.arange(len(positions))]
195 return vmin, vlen
198def find_mic(v, cell, pbc=True):
199 """Finds the minimum-image representation of vector(s) v using either one
200 of two find mic algorithms depending on the given cell, v and pbc."""
202 cell = Cell(cell)
203 pbc = cell.any(1) & pbc2pbc(pbc)
204 dim = np.sum(pbc)
205 v = np.asarray(v)
206 single = v.ndim == 1
207 v = np.atleast_2d(v)
209 if dim > 0:
210 naive_find_mic_is_safe = False
211 if dim == 3:
212 vmin, vlen = naive_find_mic(v, cell)
213 # naive find mic is safe only for the following condition
214 if (vlen < 0.5 * min(cell.lengths())).all():
215 naive_find_mic_is_safe = True # hence skip Minkowski reduction
217 if not naive_find_mic_is_safe:
218 vmin, vlen = general_find_mic(v, cell, pbc=pbc)
219 else:
220 vmin = v.copy()
221 vlen = np.linalg.norm(vmin, axis=1)
223 if single:
224 return vmin[0], vlen[0]
225 else:
226 return vmin, vlen
229def conditional_find_mic(vectors, cell, pbc):
230 """Return list of vector arrays and corresponding list of vector lengths
231 for a given list of vector arrays. The minimum image convention is applied
232 if cell and pbc are set. Can be used like a simple version of get_distances.
233 """
234 if (cell is None) != (pbc is None):
235 raise ValueError("cell or pbc must be both set or both be None")
236 if cell is not None:
237 mics = [find_mic(v, cell, pbc) for v in vectors]
238 vectors, vector_lengths = zip(*mics)
239 else:
240 vector_lengths = np.linalg.norm(vectors, axis=2)
241 return [np.asarray(v) for v in vectors], vector_lengths
244def get_angles(v0, v1, cell=None, pbc=None):
245 """Get angles formed by two lists of vectors.
247 Calculate angle in degrees between vectors v0 and v1
249 Set a cell and pbc to enable minimum image
250 convention, otherwise angles are taken as-is.
251 """
252 (v0, v1), (nv0, nv1) = conditional_find_mic([v0, v1], cell, pbc)
254 if (nv0 <= 0).any() or (nv1 <= 0).any():
255 raise ZeroDivisionError('Undefined angle')
256 v0n = v0 / nv0[:, np.newaxis]
257 v1n = v1 / nv1[:, np.newaxis]
258 # We just normalized the vectors, but in some cases we can get
259 # bad things like 1+2e-16. These we clip away:
260 angles = np.arccos(np.einsum('ij,ij->i', v0n, v1n).clip(-1.0, 1.0))
261 return np.degrees(angles)
264def get_angles_derivatives(v0, v1, cell=None, pbc=None):
265 """Get derivatives of angles formed by two lists of vectors (v0, v1) w.r.t.
266 Cartesian coordinates in degrees.
268 Set a cell and pbc to enable minimum image
269 convention, otherwise derivatives of angles are taken as-is.
271 There is a singularity in the derivatives for sin(angle) -> 0 for which
272 a ZeroDivisionError is raised.
274 Derivative output format: [[dx_a0, dy_a0, dz_a0], [...], [..., dz_a2].
275 """
276 (v0, v1), (nv0, nv1) = conditional_find_mic([v0, v1], cell, pbc)
278 angles = np.radians(get_angles(v0, v1, cell=cell, pbc=pbc))
279 sin_angles = np.sin(angles)
280 cos_angles = np.cos(angles)
281 if (sin_angles == 0.).any(): # identify singularities
282 raise ZeroDivisionError('Singularity for angle derivative')
284 product = nv0 * nv1
285 deriv_d0 = (-(v1 / product[:, np.newaxis] # derivatives by atom 0
286 - np.einsum('ij,i->ij', v0, cos_angles / nv0**2))
287 / sin_angles[:, np.newaxis])
288 deriv_d2 = (-(v0 / product[:, np.newaxis] # derivatives by atom 2
289 - np.einsum('ij,i->ij', v1, cos_angles / nv1**2))
290 / sin_angles[:, np.newaxis])
291 deriv_d1 = -(deriv_d0 + deriv_d2) # derivatives by atom 1
292 derivs = np.stack((deriv_d0, deriv_d1, deriv_d2), axis=1)
293 return np.degrees(derivs)
296def get_dihedrals(v0, v1, v2, cell=None, pbc=None):
297 """Get dihedral angles formed by three lists of vectors.
299 Calculate dihedral angle (in degrees) between the vectors a0->a1,
300 a1->a2 and a2->a3, written as v0, v1 and v2.
302 Set a cell and pbc to enable minimum image
303 convention, otherwise angles are taken as-is.
304 """
305 (v0, v1, v2), (_, nv1, _) = conditional_find_mic([v0, v1, v2], cell, pbc)
307 v1n = v1 / nv1[:, np.newaxis]
308 # v, w: projection of v0, v2 onto plane perpendicular to v1
309 v = -v0 - np.einsum('ij,ij,ik->ik', -v0, v1n, v1n)
310 w = v2 - np.einsum('ij,ij,ik->ik', v2, v1n, v1n)
312 # formula returns 0 for undefined dihedrals; prefer ZeroDivisionError
313 undefined_v = np.all(v == 0.0, axis=1)
314 undefined_w = np.all(w == 0.0, axis=1)
315 if np.any([undefined_v, undefined_w]):
316 raise ZeroDivisionError('Undefined dihedral')
318 x = np.einsum('ij,ij->i', v, w)
319 y = np.einsum('ij,ij->i', np.cross(v1n, v, axis=1), w)
320 dihedrals = np.arctan2(y, x) # dihedral angle in [-pi, pi]
321 dihedrals[dihedrals < 0.] += 2 * np.pi # dihedral angle in [0, 2*pi]
322 return np.degrees(dihedrals)
325def get_dihedrals_derivatives(v0, v1, v2, cell=None, pbc=None):
326 """Get derivatives of dihedrals formed by three lists of vectors
327 (v0, v1, v2) w.r.t Cartesian coordinates in degrees.
329 Set a cell and pbc to enable minimum image
330 convention, otherwise dihedrals are taken as-is.
332 Derivative output format: [[dx_a0, dy_a0, dz_a0], ..., [..., dz_a3]].
333 """
334 (v0, v1, v2), (nv0, nv1, nv2) = conditional_find_mic([v0, v1, v2], cell,
335 pbc)
337 v0 /= nv0[:, np.newaxis]
338 v1 /= nv1[:, np.newaxis]
339 v2 /= nv2[:, np.newaxis]
340 normal_v01 = np.cross(v0, v1, axis=1)
341 normal_v12 = np.cross(v1, v2, axis=1)
342 cos_psi01 = np.einsum('ij,ij->i', v0, v1) # == np.sum(v0 * v1, axis=1)
343 sin_psi01 = np.sin(np.arccos(cos_psi01))
344 cos_psi12 = np.einsum('ij,ij->i', v1, v2)
345 sin_psi12 = np.sin(np.arccos(cos_psi12))
346 if (sin_psi01 == 0.).any() or (sin_psi12 == 0.).any():
347 raise ZeroDivisionError('Undefined derivative for undefined dihedral')
349 deriv_d0 = -normal_v01 / (nv0 * sin_psi01**2)[:, np.newaxis] # by atom 0
350 deriv_d3 = normal_v12 / (nv2 * sin_psi12**2)[:, np.newaxis] # by atom 3
351 deriv_d1 = (((nv1 + nv0 * cos_psi01) / nv1)[:, np.newaxis] * -deriv_d0
352 + (cos_psi12 * nv2 / nv1)[:, np.newaxis] * deriv_d3) # by a1
353 deriv_d2 = (-((nv1 + nv2 * cos_psi12) / nv1)[:, np.newaxis] * deriv_d3
354 - (cos_psi01 * nv0 / nv1)[:, np.newaxis] * -deriv_d0) # by a2
355 derivs = np.stack((deriv_d0, deriv_d1, deriv_d2, deriv_d3), axis=1)
356 return np.degrees(derivs)
359def get_distances(p1, p2=None, cell=None, pbc=None):
360 """Return distance matrix of every position in p1 with every position in p2
362 If p2 is not set, it is assumed that distances between all positions in p1
363 are desired. p2 will be set to p1 in this case.
365 Use set cell and pbc to use the minimum image convention.
366 """
367 p1 = np.atleast_2d(p1)
368 if p2 is None:
369 np1 = len(p1)
370 ind1, ind2 = np.triu_indices(np1, k=1)
371 D = p1[ind2] - p1[ind1]
372 else:
373 p2 = np.atleast_2d(p2)
374 D = (p2[np.newaxis, :, :] - p1[:, np.newaxis, :]).reshape((-1, 3))
376 (D, ), (D_len, ) = conditional_find_mic([D], cell=cell, pbc=pbc)
378 if p2 is None:
379 Dout = np.zeros((np1, np1, 3))
380 Dout[(ind1, ind2)] = D
381 Dout -= np.transpose(Dout, axes=(1, 0, 2))
383 Dout_len = np.zeros((np1, np1))
384 Dout_len[(ind1, ind2)] = D_len
385 Dout_len += Dout_len.T
386 return Dout, Dout_len
388 # Expand back to matrix indexing
389 D.shape = (-1, len(p2), 3)
390 D_len.shape = (-1, len(p2))
392 return D, D_len
395def get_distances_derivatives(v0, cell=None, pbc=None):
396 """Get derivatives of distances for all vectors in v0 w.r.t. Cartesian
397 coordinates in Angstrom.
399 Set cell and pbc to use the minimum image convention.
401 There is a singularity for distances -> 0 for which a ZeroDivisionError is
402 raised.
403 Derivative output format: [[dx_a0, dy_a0, dz_a0], [dx_a1, dy_a1, dz_a1]].
404 """
405 (v0, ), (dists, ) = conditional_find_mic([v0], cell, pbc)
407 if (dists <= 0.).any(): # identify singularities
408 raise ZeroDivisionError('Singularity for distance derivative')
410 derivs_d0 = np.einsum('i,ij->ij', -1. / dists, v0) # derivatives by atom 0
411 derivs_d1 = -derivs_d0 # derivatives by atom 1
412 derivs = np.stack((derivs_d0, derivs_d1), axis=1)
413 return derivs
416def get_duplicate_atoms(atoms, cutoff=0.1, delete=False):
417 """Get list of duplicate atoms and delete them if requested.
419 Identify all atoms which lie within the cutoff radius of each other.
420 Delete one set of them if delete == True.
421 """
422 from scipy.spatial.distance import pdist
423 dists = pdist(atoms.get_positions(), 'sqeuclidean')
424 dup = np.nonzero(dists < cutoff**2)
425 rem = np.array(_row_col_from_pdist(len(atoms), dup[0]))
426 if delete:
427 if rem.size != 0:
428 del atoms[rem[:, 0]]
429 else:
430 return rem
433def _row_col_from_pdist(dim, i):
434 """Calculate the i,j index in the square matrix for an index in a
435 condensed (triangular) matrix.
436 """
437 i = np.array(i)
438 b = 1 - 2 * dim
439 x = (np.floor((-b - np.sqrt(b**2 - 8 * i)) / 2)).astype(int)
440 y = (i + x * (b + x + 2) / 2 + 1).astype(int)
441 if i.shape:
442 return list(zip(x, y))
443 else:
444 return [(x, y)]
447def permute_axes(atoms, permutation):
448 """Permute axes of unit cell and atom positions. Considers only cell and
449 atomic positions. Other vector quantities such as momenta are not
450 modified."""
451 assert (np.sort(permutation) == np.arange(3)).all()
453 permuted = atoms.copy()
454 scaled = permuted.get_scaled_positions()
455 permuted.set_cell(permuted.cell.permute_axes(permutation),
456 scale_atoms=False)
457 permuted.set_scaled_positions(scaled[:, permutation])
458 permuted.set_pbc(permuted.pbc[permutation])
459 return permuted