Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1import numpy as np
4def distance(s1, s2, permute=True):
5 """Get the distance between two structures s1 and s2.
7 The distance is defined by the Frobenius norm of
8 the spatial distance between all coordinates (see
9 numpy.linalg.norm for the definition).
11 permute: minimise the distance by 'permuting' same elements
12 """
14 s1 = s1.copy()
15 s2 = s2.copy()
16 for s in [s1, s2]:
17 s.translate(-s.get_center_of_mass())
18 s2pos = 1. * s2.get_positions()
20 def align(struct, xaxis='x', yaxis='y'):
21 """Align moments of inertia with the coordinate system."""
22 Is, Vs = struct.get_moments_of_inertia(True)
23 IV = list(zip(Is, Vs))
24 IV.sort(key=lambda x: x[0])
25 struct.rotate(IV[0][1], xaxis)
27 Is, Vs = struct.get_moments_of_inertia(True)
28 IV = list(zip(Is, Vs))
29 IV.sort(key=lambda x: x[0])
30 struct.rotate(IV[1][1], yaxis)
32 align(s1)
34 def dd(s1, s2, permute):
35 if permute:
36 s2 = s2.copy()
37 dist = 0
38 for a in s1:
39 imin = None
40 dmin = np.Inf
41 for i, b in enumerate(s2):
42 if a.symbol == b.symbol:
43 d = np.sum((a.position - b.position)**2)
44 if d < dmin:
45 dmin = d
46 imin = i
47 dist += dmin
48 s2.pop(imin)
49 return np.sqrt(dist)
50 else:
51 return np.linalg.norm(s1.get_positions() - s2.get_positions())
53 dists = []
54 # principles
55 for x, y in zip(['x', '-x', 'x', '-x'], ['y', 'y', '-y', '-y']):
56 s2.set_positions(s2pos)
57 align(s2, x, y)
58 dists.append(dd(s1, s2, permute))
60 return min(dists)