Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""Implements the Topology-Scaling Algorithm (TSA)
3Method is described in:
4Topology-Scaling Identification of Layered Solids and Stable Exfoliated
52D Materials
6M. Ashton, J. Paul, S.B. Sinnott, and R.G. Hennig
7Phys. Rev. Lett. 118, 106101
82017
11A disjoint set is used here to allow insertion of bonds one at a time.
12This permits k-interval analysis.
13"""
16import itertools
17import numpy as np
18from ase.geometry.dimensionality.disjoint_set import DisjointSet
21class TSA:
23 def __init__(self, num_atoms, n=2):
24 """Initializes the TSA class.
26 A disjoint set is maintained for the single cell and for the supercell.
27 For some materials, such as interpenetrating networks,
28 the dimensionality classification is dependent on the size of the
29 initial cell.
31 Parameters:
33 num_atoms: int The number of atoms in the unit cell.
34 n: int The number size of the (n, n, n) periodic supercell.
35 """
36 self.n = n
37 self.num_atoms = num_atoms
38 self.gsingle = DisjointSet(num_atoms)
39 self.gsuper = DisjointSet(num_atoms * n**3)
41 self.m = [1, n, n**2]
42 self.cells = np.array(list(itertools.product(range(n), repeat=3)))
43 self.offsets = num_atoms * np.dot(self.m, self.cells.T)
45 def insert_bond(self, i, j, offset):
46 """Inserts a bond into the component graph, both in the single cell and
47 each of the n^3 subcells of the supercell.
49 Parameters:
51 i: int The index of the first atom.
52 n: int The index of the second atom.
53 offset: tuple The cell offset of the second atom.
54 """
55 nbr_cells = (self.cells + offset) % self.n
56 nbr_offsets = self.num_atoms * np.dot(self.m, nbr_cells.T)
58 self.gsingle.union(i, j)
59 for (a, b) in zip(self.offsets, nbr_offsets):
60 self.gsuper.union(a + i, b + j)
61 self.gsuper.union(b + i, a + j)
63 def _get_component_dimensionalities(self):
65 n = self.n
66 offsets = self.offsets
67 single_roots = np.unique(self.gsingle.find_all())
68 super_components = self.gsuper.find_all()
70 component_dim = {}
71 for i in single_roots:
73 num_clusters = len(np.unique(super_components[offsets + i]))
74 dim = {n**3: 0, n**2: 1, n: 2, 1: 3}[num_clusters]
75 component_dim[i] = dim
76 return component_dim
78 def check(self):
79 """Determines the dimensionality histogram.
81 Returns:
82 hist : tuple Dimensionality histogram.
83 """
84 cdim = self._get_component_dimensionalities()
85 hist = np.zeros(4).astype(int)
86 bc = np.bincount(list(cdim.values()))
87 hist[:len(bc)] = bc
88 return tuple(hist)
90 def get_components(self):
91 """Determines the dimensionality and constituent atoms of each
92 component.
94 Returns:
95 components: array The component ID every atom
96 """
97 relabelled_dim = {}
98 relabelled_components = self.gsingle.find_all(relabel=True)
99 cdim = self._get_component_dimensionalities()
100 for k, v in cdim.items():
101 relabelled_dim[relabelled_components[k]] = v
103 return relabelled_components, relabelled_dim