Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1""" An object which can be associated with a local relaxation in order
2to make the relaxations run more smoothly."""
3from math import sqrt
4import numpy as np
7class VariansBreak:
9 """ Helper class which can be attached to a structure optimization,
10 in order to terminale stalling calculations.
12 Parameters:
14 atoms: Atoms object being optimized
15 dyn: The relaxation object being used
16 min_stdev: The limiting std. deviation in forces to terminate at
17 N: The number of steps used to calculate the st. dev.
18 """
19 def __init__(self, atoms, dyn, min_stdev=0.005, N=15):
20 self.atoms = atoms
21 self.dyn = dyn
22 self.N = N
23 self.forces = []
24 self.min_stdev = min_stdev
26 def write(self):
27 """ The method called by the optimizer in each step. """
28 if len(self.forces) >= self.N:
29 self.forces.pop(0)
30 fmax = (self.atoms.get_forces()**2).sum(axis=1).max()**0.5
31 self.forces.append(fmax)
33 m = sum(self.forces) / float(len(self.forces))
35 stdev = sqrt(sum([(c - m)**2 for c in self.forces]) /
36 float(len(self.forces)))
38 if len(self.forces) >= self.N and stdev < self.min_stdev:
39 self.dyn.converged = lambda x: True
42class DivergenceBreak:
44 """ Helper class which can be attached to a structure optimization,
45 in order to terminate diverging calculations.
47 Parameters:
49 atoms: Atoms object being optimized
50 dyn: The relaxation object being used
51 N: The maximum number of recent steps to be included in the
52 evaluation of the slope
53 Nmin: The minimal amount of steps required before evaluating
54 the slope
55 """
56 def __init__(self, atoms, dyn, N=15, Nmin=5):
57 self.atoms = atoms
58 self.dyn = dyn
59 self.N = N
60 self.Nmin = 5
61 self.energies = []
63 def write(self):
64 """ The method called by the optimizer in each step. """
66 if len(self.energies) >= self.N:
67 self.energies.pop(0)
68 self.energies.append(self.atoms.get_potential_energy())
70 if len(self.energies) > self.Nmin:
71 x = np.array(range(len(self.energies)))
72 y = np.array(self.energies)
73 A = np.vstack([x, np.ones(len(x))]).T
74 slope, intersect = np.linalg.lstsq(A, y)[0]
76 if len(self.energies) >= self.N and slope > 0:
77 self.dyn.converged = lambda x: True