Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1from ase.ga.offspring_creator import OffspringCreator
2from ase import Atoms
3from itertools import chain
4import numpy as np
7class Crossover(OffspringCreator):
8 """Base class for all particle crossovers.
10 Originally intended for medium sized particles
12 Do not call this class directly."""
14 def __init__(self, rng=np.random):
15 OffspringCreator.__init__(self, rng=rng)
16 self.descriptor = 'Crossover'
17 self.min_inputs = 2
20class CutSpliceCrossover(Crossover):
21 """Crossover that cuts two particles through a plane in space and
22 merges two halfes from different particles together.
24 Implementation of the method presented in:
25 D. M. Deaven and K. M. Ho, Phys. Rev. Lett., 75, 2, 288-291 (1995)
27 It keeps the correct composition by randomly assigning elements in
28 the new particle. If some of the atoms in the two particle halves
29 are too close, the halves are moved away from each other perpendicular
30 to the cutting plane.
32 Parameters:
34 blmin: dictionary of minimum distance between atomic numbers.
35 e.g. {(28,29): 1.5}
37 keep_composition: boolean that signifies if the composition should
38 be the same as in the parents.
40 rng: Random number generator
41 By default numpy.random.
42 """
44 def __init__(self, blmin, keep_composition=True, rng=np.random):
45 Crossover.__init__(self, rng=rng)
46 self.blmin = blmin
47 self.keep_composition = keep_composition
48 self.descriptor = 'CutSpliceCrossover'
50 def get_new_individual(self, parents):
51 f, m = parents
53 indi = self.initialize_individual(f)
54 indi.info['data']['parents'] = [i.info['confid'] for i in parents]
56 theta = self.rng.rand() * 2 * np.pi # 0,2pi
57 phi = self.rng.rand() * np.pi # 0,pi
58 e = np.array((np.sin(phi) * np.cos(theta),
59 np.sin(theta) * np.sin(phi),
60 np.cos(phi)))
61 eps = 0.0001
63 f.translate(-f.get_center_of_mass())
64 m.translate(-m.get_center_of_mass())
66 # Get the signed distance to the cutting plane
67 # We want one side from f and the other side from m
68 fmap = [np.dot(x, e) for x in f.get_positions()]
69 mmap = [-np.dot(x, e) for x in m.get_positions()]
70 ain = sorted([i for i in chain(fmap, mmap) if i > 0],
71 reverse=True)
72 aout = sorted([i for i in chain(fmap, mmap) if i < 0],
73 reverse=True)
75 off = len(ain) - len(f)
77 # Translating f and m to get the correct number of atoms
78 # in the offspring
79 if off < 0:
80 # too few
81 # move f and m away from the plane
82 dist = (abs(aout[abs(off) - 1]) + abs(aout[abs(off)])) * .5
83 f.translate(e * dist)
84 m.translate(-e * dist)
85 elif off > 0:
86 # too many
87 # move f and m towards the plane
88 dist = (abs(ain[-off - 1]) + abs(ain[-off])) * .5
89 f.translate(-e * dist)
90 m.translate(e * dist)
91 if off != 0 and dist == 0:
92 # Exactly same position => we continue with the wrong number
93 # of atoms. What should be done? Fail or return None or
94 # remove one of the two atoms with exactly the same position.
95 pass
97 # Determine the contributing parts from f and m
98 tmpf, tmpm = Atoms(), Atoms()
99 for atom in f:
100 if np.dot(atom.position, e) > 0:
101 atom.tag = 1
102 tmpf.append(atom)
103 for atom in m:
104 if np.dot(atom.position, e) < 0:
105 atom.tag = 2
106 tmpm.append(atom)
108 # Check that the correct composition is employed
109 if self.keep_composition:
110 opt_sm = sorted(f.numbers)
111 tmpf_numbers = list(tmpf.numbers)
112 tmpm_numbers = list(tmpm.numbers)
113 cur_sm = sorted(tmpf_numbers + tmpm_numbers)
114 # correct_by: dictionary that specifies how many
115 # of the atom_numbers should be removed (a negative number)
116 # or added (a positive number)
117 correct_by = dict([(j, opt_sm.count(j)) for j in set(opt_sm)])
118 for n in cur_sm:
119 correct_by[n] -= 1
120 correct_in = tmpf if self.rng.choice([0, 1]) else tmpm
121 to_add, to_rem = [], []
122 for num, amount in correct_by.items():
123 if amount > 0:
124 to_add.extend([num] * amount)
125 elif amount < 0:
126 to_rem.extend([num] * abs(amount))
127 for add, rem in zip(to_add, to_rem):
128 tbc = [a.index for a in correct_in if a.number == rem]
129 if len(tbc) == 0:
130 pass
131 ai = self.rng.choice(tbc)
132 correct_in[ai].number = add
134 # Move the contributing apart if any distance is below blmin
135 maxl = 0.
136 for sv, min_dist in self.get_vectors_below_min_dist(tmpf + tmpm):
137 lsv = np.linalg.norm(sv) # length of shortest vector
138 d = [-np.dot(e, sv)] * 2
139 d[0] += np.sqrt(np.dot(e, sv)**2 - lsv**2 + min_dist**2)
140 d[1] -= np.sqrt(np.dot(e, sv)**2 - lsv**2 + min_dist**2)
141 l = sorted([abs(i) for i in d])[0] / 2. + eps
142 if l > maxl:
143 maxl = l
144 tmpf.translate(e * maxl)
145 tmpm.translate(-e * maxl)
147 # Put the two parts together
148 for atom in chain(tmpf, tmpm):
149 indi.append(atom)
151 parent_message = ':Parents {0} {1}'.format(f.info['confid'],
152 m.info['confid'])
153 return (self.finalize_individual(indi),
154 self.descriptor + parent_message)
156 def get_numbers(self, atoms):
157 """Returns the atomic numbers of the atoms object using only
158 the elements defined in self.elements"""
159 ac = atoms.copy()
160 if self.elements is not None:
161 del ac[[a.index for a in ac
162 if a.symbol in self.elements]]
163 return ac.numbers
165 def get_vectors_below_min_dist(self, atoms):
166 """Generator function that returns each vector (between atoms)
167 that is shorter than the minimum distance for those atom types
168 (set during the initialization in blmin)."""
169 norm = np.linalg.norm
170 ap = atoms.get_positions()
171 an = atoms.numbers
172 for i in range(len(atoms)):
173 pos = atoms[i].position
174 for j, d in enumerate([norm(k - pos) for k in ap[i:]]):
175 if d == 0:
176 continue
177 min_dist = self.blmin[tuple(sorted((an[i], an[j + i])))]
178 if d < min_dist:
179 yield atoms[i].position - atoms[j + i].position, min_dist
181 def get_shortest_dist_vector(self, atoms):
182 norm = np.linalg.norm
183 mind = 10000.
184 ap = atoms.get_positions()
185 for i in range(len(atoms)):
186 pos = atoms[i].position
187 for j, d in enumerate([norm(k - pos) for k in ap[i:]]):
188 if d == 0:
189 continue
190 if d < mind:
191 mind = d
192 lowpair = (i, j + i)
193 return atoms[lowpair[0]].position - atoms[lowpair[1]].position