Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""TIP3P potential."""
3import numpy as np
5import ase.units as units
6from ase.calculators.calculator import Calculator, all_changes
8qH = 0.417
9sigma0 = 3.15061
10epsilon0 = 0.1521 * units.kcal / units.mol
11rOH = 0.9572
12angleHOH = 104.52
13thetaHOH = 104.52 / 180 * np.pi # we keep this for backwards compatibility
16class TIP3P(Calculator):
17 implemented_properties = ['energy', 'forces']
18 nolabel = True
19 pcpot = None
21 def __init__(self, rc=5.0, width=1.0):
22 """TIP3P potential.
24 rc: float
25 Cutoff radius for Coulomb part.
26 width: float
27 Width for cutoff function for Coulomb part.
28 """
29 self.rc = rc
30 self.width = width
31 Calculator.__init__(self)
32 self.sites_per_mol = 3
34 def calculate(self, atoms=None,
35 properties=['energy'],
36 system_changes=all_changes):
37 Calculator.calculate(self, atoms, properties, system_changes)
39 R = self.atoms.positions.reshape((-1, 3, 3))
40 Z = self.atoms.numbers
41 pbc = self.atoms.pbc
42 cell = self.atoms.cell.diagonal()
43 nh2o = len(R)
45 assert (self.atoms.cell == np.diag(cell)).all(), 'not orthorhombic'
46 assert ((cell >= 2 * self.rc) | ~pbc).all(), 'cutoff too large' # ???
47 if Z[0] == 8:
48 o = 0
49 else:
50 o = 2
51 assert (Z[o::3] == 8).all()
52 assert (Z[(o + 1) % 3::3] == 1).all()
53 assert (Z[(o + 2) % 3::3] == 1).all()
55 charges = np.array([qH, qH, qH])
56 charges[o] *= -2
58 energy = 0.0
59 forces = np.zeros((3 * nh2o, 3))
61 for m in range(nh2o - 1):
62 DOO = R[m + 1:, o] - R[m, o]
63 shift = np.zeros_like(DOO)
64 for i, periodic in enumerate(pbc):
65 if periodic:
66 L = cell[i]
67 shift[:, i] = (DOO[:, i] + L / 2) % L - L / 2 - DOO[:, i]
68 DOO += shift
69 d2 = (DOO**2).sum(1)
70 d = d2**0.5
71 x1 = d > self.rc - self.width
72 x2 = d < self.rc
73 x12 = np.logical_and(x1, x2)
74 y = (d[x12] - self.rc + self.width) / self.width
75 t = np.zeros(len(d)) # cutoff function
76 t[x2] = 1.0
77 t[x12] -= y**2 * (3.0 - 2.0 * y)
78 dtdd = np.zeros(len(d))
79 dtdd[x12] -= 6.0 / self.width * y * (1.0 - y)
80 c6 = (sigma0**2 / d2)**3
81 c12 = c6**2
82 e = 4 * epsilon0 * (c12 - c6)
83 energy += np.dot(t, e)
84 F = (24 * epsilon0 * (2 * c12 - c6) / d2 * t -
85 e * dtdd / d)[:, np.newaxis] * DOO
86 forces[m * 3 + o] -= F.sum(0)
87 forces[m * 3 + 3 + o::3] += F
89 for j in range(3):
90 D = R[m + 1:] - R[m, j] + shift[:, np.newaxis]
91 r2 = (D**2).sum(axis=2)
92 r = r2**0.5
93 e = charges[j] * charges / r * units.Hartree * units.Bohr
94 energy += np.dot(t, e).sum()
95 F = (e / r2 * t[:, np.newaxis])[:, :, np.newaxis] * D
96 FOO = -(e.sum(1) * dtdd / d)[:, np.newaxis] * DOO
97 forces[(m + 1) * 3 + o::3] += FOO
98 forces[m * 3 + o] -= FOO.sum(0)
99 forces[(m + 1) * 3:] += F.reshape((-1, 3))
100 forces[m * 3 + j] -= F.sum(axis=0).sum(axis=0)
102 if self.pcpot:
103 e, f = self.pcpot.calculate(np.tile(charges, nh2o),
104 self.atoms.positions)
105 energy += e
106 forces += f
108 self.results['energy'] = energy
109 self.results['forces'] = forces
111 def embed(self, charges):
112 """Embed atoms in point-charges."""
113 self.pcpot = PointChargePotential(charges)
114 return self.pcpot
116 def check_state(self, atoms, tol=1e-15):
117 system_changes = Calculator.check_state(self, atoms, tol)
118 if self.pcpot and self.pcpot.mmpositions is not None:
119 system_changes.append('positions')
120 return system_changes
122 def add_virtual_sites(self, positions):
123 return positions # no virtual sites
125 def redistribute_forces(self, forces):
126 return forces
128 def get_virtual_charges(self, atoms):
129 charges = np.empty(len(atoms))
130 charges[:] = qH
131 if atoms.numbers[0] == 8:
132 charges[::3] = -2 * qH
133 else:
134 charges[2::3] = -2 * qH
135 return charges
138class PointChargePotential:
139 def __init__(self, mmcharges):
140 """Point-charge potential for TIP3P.
142 Only used for testing QMMM.
143 """
144 self.mmcharges = mmcharges
145 self.mmpositions = None
146 self.mmforces = None
148 def set_positions(self, mmpositions, com_pv=None):
149 self.mmpositions = mmpositions
151 def calculate(self, qmcharges, qmpositions):
152 energy = 0.0
153 self.mmforces = np.zeros_like(self.mmpositions)
154 qmforces = np.zeros_like(qmpositions)
155 for C, R, F in zip(self.mmcharges, self.mmpositions, self.mmforces):
156 d = qmpositions - R
157 r2 = (d**2).sum(1)
158 e = units.Hartree * units.Bohr * C * r2**-0.5 * qmcharges
159 energy += e.sum()
160 f = (e / r2)[:, np.newaxis] * d
161 qmforces += f
162 F -= f.sum(0)
163 self.mmpositions = None
164 return energy, qmforces
166 def get_forces(self, calc):
167 return self.mmforces