Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1"""TIP3P potential.""" 

2 

3import numpy as np 

4 

5import ase.units as units 

6from ase.calculators.calculator import Calculator, all_changes 

7 

8qH = 0.417 

9sigma0 = 3.15061 

10epsilon0 = 0.1521 * units.kcal / units.mol 

11rOH = 0.9572 

12angleHOH = 104.52 

13thetaHOH = 104.52 / 180 * np.pi # we keep this for backwards compatibility 

14 

15 

16class TIP3P(Calculator): 

17 implemented_properties = ['energy', 'forces'] 

18 nolabel = True 

19 pcpot = None 

20 

21 def __init__(self, rc=5.0, width=1.0): 

22 """TIP3P potential. 

23 

24 rc: float 

25 Cutoff radius for Coulomb part. 

26 width: float 

27 Width for cutoff function for Coulomb part. 

28 """ 

29 self.rc = rc 

30 self.width = width 

31 Calculator.__init__(self) 

32 self.sites_per_mol = 3 

33 

34 def calculate(self, atoms=None, 

35 properties=['energy'], 

36 system_changes=all_changes): 

37 Calculator.calculate(self, atoms, properties, system_changes) 

38 

39 R = self.atoms.positions.reshape((-1, 3, 3)) 

40 Z = self.atoms.numbers 

41 pbc = self.atoms.pbc 

42 cell = self.atoms.cell.diagonal() 

43 nh2o = len(R) 

44 

45 assert (self.atoms.cell == np.diag(cell)).all(), 'not orthorhombic' 

46 assert ((cell >= 2 * self.rc) | ~pbc).all(), 'cutoff too large' # ??? 

47 if Z[0] == 8: 

48 o = 0 

49 else: 

50 o = 2 

51 assert (Z[o::3] == 8).all() 

52 assert (Z[(o + 1) % 3::3] == 1).all() 

53 assert (Z[(o + 2) % 3::3] == 1).all() 

54 

55 charges = np.array([qH, qH, qH]) 

56 charges[o] *= -2 

57 

58 energy = 0.0 

59 forces = np.zeros((3 * nh2o, 3)) 

60 

61 for m in range(nh2o - 1): 

62 DOO = R[m + 1:, o] - R[m, o] 

63 shift = np.zeros_like(DOO) 

64 for i, periodic in enumerate(pbc): 

65 if periodic: 

66 L = cell[i] 

67 shift[:, i] = (DOO[:, i] + L / 2) % L - L / 2 - DOO[:, i] 

68 DOO += shift 

69 d2 = (DOO**2).sum(1) 

70 d = d2**0.5 

71 x1 = d > self.rc - self.width 

72 x2 = d < self.rc 

73 x12 = np.logical_and(x1, x2) 

74 y = (d[x12] - self.rc + self.width) / self.width 

75 t = np.zeros(len(d)) # cutoff function 

76 t[x2] = 1.0 

77 t[x12] -= y**2 * (3.0 - 2.0 * y) 

78 dtdd = np.zeros(len(d)) 

79 dtdd[x12] -= 6.0 / self.width * y * (1.0 - y) 

80 c6 = (sigma0**2 / d2)**3 

81 c12 = c6**2 

82 e = 4 * epsilon0 * (c12 - c6) 

83 energy += np.dot(t, e) 

84 F = (24 * epsilon0 * (2 * c12 - c6) / d2 * t - 

85 e * dtdd / d)[:, np.newaxis] * DOO 

86 forces[m * 3 + o] -= F.sum(0) 

87 forces[m * 3 + 3 + o::3] += F 

88 

89 for j in range(3): 

90 D = R[m + 1:] - R[m, j] + shift[:, np.newaxis] 

91 r2 = (D**2).sum(axis=2) 

92 r = r2**0.5 

93 e = charges[j] * charges / r * units.Hartree * units.Bohr 

94 energy += np.dot(t, e).sum() 

95 F = (e / r2 * t[:, np.newaxis])[:, :, np.newaxis] * D 

96 FOO = -(e.sum(1) * dtdd / d)[:, np.newaxis] * DOO 

97 forces[(m + 1) * 3 + o::3] += FOO 

98 forces[m * 3 + o] -= FOO.sum(0) 

99 forces[(m + 1) * 3:] += F.reshape((-1, 3)) 

100 forces[m * 3 + j] -= F.sum(axis=0).sum(axis=0) 

101 

102 if self.pcpot: 

103 e, f = self.pcpot.calculate(np.tile(charges, nh2o), 

104 self.atoms.positions) 

105 energy += e 

106 forces += f 

107 

108 self.results['energy'] = energy 

109 self.results['forces'] = forces 

110 

111 def embed(self, charges): 

112 """Embed atoms in point-charges.""" 

113 self.pcpot = PointChargePotential(charges) 

114 return self.pcpot 

115 

116 def check_state(self, atoms, tol=1e-15): 

117 system_changes = Calculator.check_state(self, atoms, tol) 

118 if self.pcpot and self.pcpot.mmpositions is not None: 

119 system_changes.append('positions') 

120 return system_changes 

121 

122 def add_virtual_sites(self, positions): 

123 return positions # no virtual sites 

124 

125 def redistribute_forces(self, forces): 

126 return forces 

127 

128 def get_virtual_charges(self, atoms): 

129 charges = np.empty(len(atoms)) 

130 charges[:] = qH 

131 if atoms.numbers[0] == 8: 

132 charges[::3] = -2 * qH 

133 else: 

134 charges[2::3] = -2 * qH 

135 return charges 

136 

137 

138class PointChargePotential: 

139 def __init__(self, mmcharges): 

140 """Point-charge potential for TIP3P. 

141 

142 Only used for testing QMMM. 

143 """ 

144 self.mmcharges = mmcharges 

145 self.mmpositions = None 

146 self.mmforces = None 

147 

148 def set_positions(self, mmpositions, com_pv=None): 

149 self.mmpositions = mmpositions 

150 

151 def calculate(self, qmcharges, qmpositions): 

152 energy = 0.0 

153 self.mmforces = np.zeros_like(self.mmpositions) 

154 qmforces = np.zeros_like(qmpositions) 

155 for C, R, F in zip(self.mmcharges, self.mmpositions, self.mmforces): 

156 d = qmpositions - R 

157 r2 = (d**2).sum(1) 

158 e = units.Hartree * units.Bohr * C * r2**-0.5 * qmcharges 

159 energy += e.sum() 

160 f = (e / r2)[:, np.newaxis] * d 

161 qmforces += f 

162 F -= f.sum(0) 

163 self.mmpositions = None 

164 return energy, qmforces 

165 

166 def get_forces(self, calc): 

167 return self.mmforces