Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1import numpy as np 

2from ase.calculators.calculator import Calculator 

3from ase import units 

4 

5k_c = units.Hartree * units.Bohr 

6 

7 

8class AtomicCounterIon(Calculator): 

9 implemented_properties = ['energy', 'forces'] 

10 

11 def __init__(self, charge, epsilon, sigma, sites_per_mol=1, 

12 rc=7.0, width=1.0): 

13 """ Counter Ion Calculator. 

14 

15 A very simple, nonbonded (Coulumb and LJ) 

16 interaction calculator meant for single atom ions 

17 to charge neutralize systems (and nothing else)... 

18 """ 

19 self.rc = rc 

20 self.width = width 

21 self.sites_per_mol = sites_per_mol 

22 self.epsilon = epsilon 

23 self.sigma = sigma 

24 self.charge = charge 

25 Calculator.__init__(self) 

26 

27 def add_virtual_sites(self, positions): 

28 return positions 

29 

30 def get_virtual_charges(self, atoms): 

31 charges = np.tile(self.charge, len(atoms) // self.sites_per_mol) 

32 return charges 

33 

34 def redistribute_forces(self, forces): 

35 return forces 

36 

37 def calculate(self, atoms, properties, system_changes): 

38 Calculator.calculate(self, atoms, properties, system_changes) 

39 

40 R = atoms.get_positions() 

41 charges = self.get_virtual_charges(atoms) 

42 pbc = atoms.pbc 

43 

44 energy = 0.0 

45 forces = np.zeros_like(atoms.get_positions()) 

46 

47 for m in range(len(atoms)): 

48 D = R[m + 1:] - R[m] 

49 shift = np.zeros_like(D) 

50 for i, periodic in enumerate(pbc): 

51 if periodic: 

52 L = atoms.cell.diagonal()[i] 

53 shift[:, i] = (D[:, i] + L / 2) % L - L / 2 - D[:, i] 

54 D += shift 

55 d2 = (D**2).sum(1) 

56 d = d2**0.5 

57 

58 x1 = d > self.rc - self.width 

59 x2 = d < self.rc 

60 x12 = np.logical_and(x1, x2) 

61 y = (d[x12] - self.rc + self.width) / self.width 

62 t = np.zeros(len(d)) # cutoff function 

63 t[x2] = 1.0 

64 t[x12] -= y**2 * (3.0 - 2.0 * y) 

65 dtdd = np.zeros(len(d)) 

66 dtdd[x12] -= 6.0 / self.width * y * (1.0 - y) 

67 

68 c6 = (self.sigma**2 / d2)**3 

69 c12 = c6**2 

70 e_lj = 4 * self.epsilon * (c12 - c6) 

71 e_c = k_c * charges[m + 1:] * charges[m] / d 

72 

73 energy += np.dot(t, e_lj) 

74 energy += np.dot(t, e_c) 

75 

76 F = (24 * self.epsilon * (2 * c12 - c6) / d2 * t - 

77 e_lj * dtdd / d)[:, None] * D 

78 

79 forces[m] -= F.sum(0) 

80 forces[m + 1:] += F 

81 

82 F = (e_c / d2 * t)[:, None] * D \ 

83 - (e_c * dtdd / d)[:, None] * D 

84 

85 forces[m] -= F.sum(0) 

86 forces[m + 1:] += F 

87 

88 self.results['energy'] = energy 

89 self.results['forces'] = forces