Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1from math import gcd
2import numpy as np
3from numpy.linalg import norm, solve
5from ase.build import bulk
8def surface(lattice, indices, layers, vacuum=None, tol=1e-10, periodic=False):
9 """Create surface from a given lattice and Miller indices.
11 lattice: Atoms object or str
12 Bulk lattice structure of alloy or pure metal. Note that the
13 unit-cell must be the conventional cell - not the primitive cell.
14 One can also give the chemical symbol as a string, in which case the
15 correct bulk lattice will be generated automatically.
16 indices: sequence of three int
17 Surface normal in Miller indices (h,k,l).
18 layers: int
19 Number of equivalent layers of the slab.
20 vacuum: float
21 Amount of vacuum added on both sides of the slab.
22 periodic: bool
23 Whether the surface is periodic in the normal to the surface
24 """
26 indices = np.asarray(indices)
28 if indices.shape != (3,) or not indices.any() or indices.dtype != int:
29 raise ValueError('%s is an invalid surface type' % indices)
31 if isinstance(lattice, str):
32 lattice = bulk(lattice, cubic=True)
34 h, k, l = indices
35 h0, k0, l0 = (indices == 0)
37 if h0 and k0 or h0 and l0 or k0 and l0: # if two indices are zero
38 if not h0:
39 c1, c2, c3 = [(0, 1, 0), (0, 0, 1), (1, 0, 0)]
40 if not k0:
41 c1, c2, c3 = [(0, 0, 1), (1, 0, 0), (0, 1, 0)]
42 if not l0:
43 c1, c2, c3 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
44 else:
45 p, q = ext_gcd(k, l)
46 a1, a2, a3 = lattice.cell
48 # constants describing the dot product of basis c1 and c2:
49 # dot(c1,c2) = k1+i*k2, i in Z
50 k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3),
51 l * a2 - k * a3)
52 k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3),
53 l * a2 - k * a3)
55 if abs(k2) > tol:
56 i = -int(round(k1 / k2)) # i corresponding to the optimal basis
57 p, q = p + i * l, q - i * k
59 a, b = ext_gcd(p * k + q * l, h)
61 c1 = (p * k + q * l, -p * h, -q * h)
62 c2 = np.array((0, l, -k)) // abs(gcd(l, k))
63 c3 = (b, a * p, a * q)
65 surf = build(lattice, np.array([c1, c2, c3]), layers, tol, periodic)
66 if vacuum is not None:
67 surf.center(vacuum=vacuum, axis=2)
68 return surf
71def build(lattice, basis, layers, tol, periodic):
72 surf = lattice.copy()
73 scaled = solve(basis.T, surf.get_scaled_positions().T).T
74 scaled -= np.floor(scaled + tol)
75 surf.set_scaled_positions(scaled)
76 surf.set_cell(np.dot(basis, surf.cell), scale_atoms=True)
77 surf *= (1, 1, layers)
79 a1, a2, a3 = surf.cell
80 surf.set_cell([a1, a2,
81 np.cross(a1, a2) * np.dot(a3, np.cross(a1, a2)) /
82 norm(np.cross(a1, a2))**2])
84 # Change unit cell to have the x-axis parallel with a surface vector
85 # and z perpendicular to the surface:
86 a1, a2, a3 = surf.cell
87 surf.set_cell([(norm(a1), 0, 0),
88 (np.dot(a1, a2) / norm(a1),
89 np.sqrt(norm(a2)**2 - (np.dot(a1, a2) / norm(a1))**2), 0),
90 (0, 0, norm(a3))],
91 scale_atoms=True)
93 surf.pbc = (True, True, periodic)
95 # Move atoms into the unit cell:
96 scaled = surf.get_scaled_positions()
97 scaled[:, :2] %= 1
98 surf.set_scaled_positions(scaled)
100 if not periodic:
101 surf.cell[2] = 0.0
103 return surf
106def ext_gcd(a, b):
107 if b == 0:
108 return 1, 0
109 elif a % b == 0:
110 return 0, 1
111 else:
112 x, y = ext_gcd(b, a % b)
113 return y, x - y * (a // b)